4. (a) $\mathrm{K}=150$ tons/hectare
(b) $B^{\prime}(a)=\frac{13500 e^{-a / 10}}{\left(10+90 e^{-a / 10}\right)^{2}}$
(c) $B(a)=75 \Rightarrow a=10 \ln 9=22.0$ years
${ }^{(d)} B^{\prime \prime}(a)=r B^{\prime}\left(\frac{K-B}{K}\right)+r B\left(-\frac{B^{\prime}}{K}\right)=r B^{\prime}\left(1-\frac{2 B}{K}\right)=0$ when $B=K / 2$ so B^{\prime} is
maximized when $B=K / 2$. This implies that the stand being harvested at 22 years would be harvested when the biomass growth rate has been maximized. Harvesting later than this would give a period of stand growth at lower than the maximum growth rate.
5. $N(t)=\frac{1}{2} t^{3}+\frac{t^{2}}{2}+4 t+2$
6. $\int_{0}^{2}\left(4 x-2 x^{2}\right) d x=8 / 3$
7. (a) $\frac{-3}{4} e^{-4 x}\left(x+\frac{1}{4}\right)+C$
(b) $\frac{4}{9}=.44$
(c) $\frac{(\ln \mathrm{x})^{2}}{2}+\mathrm{C}$
8. (a) $L^{\prime}(0)=.2(40-3)=7.4 \mathrm{~cm} / \mathrm{month}$
(b) $L(0)=3=40\left(1-e^{.2 t}{ }^{0}\right) \Rightarrow t_{0}=5 \ln (37 / 40)=-.39$ so $L(t)=20=40\left(1-e^{-.2(t+.39)}\right)$ which implies $t=-5 \ln (1 / 2)-.39=3.07$ months
9.

$$
\int_{0}^{6} 40(12-x) \pi\left(\frac{-1}{4} x+6\right)^{2} d x=61830 \pi=194244 \mathrm{~kg} \mathrm{~m}
$$

10.(a) $y(t)=4 e^{t^{2}+t}$
(b) $N(t)=c t^{1 / 2}$

