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1. INTRODUCTION

The purpose of this book is to present a mathematical theory of the class
of machines known as Perceptrons. The theory is carefully formulated and
focuses on the theoretical capabilities and limitations of these machines.

It is a remarkable book. Not only do the authors formulate a new and
fundamental conceptual framework, but they also fill in the details using
strikingly ingenious mathematical techniques. They ask some novel questions
and find some difficult answers. The most striking of these will be presented
in Section 2.

The authors address the book to three classes of readers:

(1) Computer scientists, specializing in pattern recognition, learning
machines, and threshold logic;

(2) Abstract mathematicians interested in the début of Computational
Geometry;

(3) Those interested in a general theory of computation leading to
decisions based on the weight of partial evidence. The authors hope that this
class includes psychologists and biologists.

In Section 6 I shall give my estimate of the value of the book to each of
these groups. -

The conversational style and the childlike freehand sketches might mislead
the casual reader into believing that this book makes light reading. For
example, the review in The American Mathematical Monthly (1969) states
that the prospective reader “requires little mathematics beyond the high
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school level.” This, as we shall see, is somewhat sanguine. Another extreme
opinion is due to Allen Newell (1969) who begins his review in Science with
the statement ‘“This is a great book.”, and then proceeds to present in detail
his reasons for this extraordinary judgement. My evaluation is somewhat
more moderate. It is presented in Sections 5 and 6.

2. HicHLIGHTS OF THE NEW THEORY

In the interest of brevity we will not provide any of the proofs or introduce
those concepts whose rdle is primarily technical. The reader who tries to
provide his own proofs will, I believe, soon come to appreciate the mathe-
matical virtuosity of the authors. We start with some definitions.

Let the plane rectangular region {0 << x << M, 0 <y << N} be divided
into squares §s; = i<y <i+ 1, j<y<j+1; :=0,1,.,M—1,
j =0, 1,..., N — 1}. The set of all these squares is called® the retina, R.
Thus R is a finite set of squares {s;;}. A subset X of R is called an #mage
(or pattern, or figure) in R. The number of squares (sometimes called points)
in X is denoted by | X |.

A predicate P is a function of images, taking on the value “true’’ or “false.”
That is, P(X) is a statement about the subset X which is either true or false.
The authors introduce the helpful “partial bracket” notation " 7, where for
any statement P, "P7 = 1 if Pis true, "P"7 = 0 if P is false. We now identify
“1” with “true,” and “0” with “false.” Thus if P is a predicate so is "PT.
This “partial bracket” is often convenient for typographically displaying
predicates.

The support of a predicate P is the intersection of all subsets .S of R which
satisfy the condition: P(X) = P(X N S) for all subsets X of R. In intuitive
terms, the support of P is the set of squares that P “‘depends on.” The
support of P is denoted by S(P). Thus | S(P)| is the number of squares in the
support of P.

For a given family of predicates @ = {¢}, we say that a predicate s is a
linear threshold function with respect to @ if there is a number 8 and, for each
¢ in @, a number o(¢), such that iy has the representation

YX) =T}, ofg) - $(X) >0

pe®

1 For simplicity and clarity of exposition in this review, I have slightly altered
Minsky and Papert’s definition, which initially takes R to be an arbitrary finite set of
points. The special setting we use here will be more suitable for our exposition and
involves no real loss in generality.
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for all subsets X of R. The class of all predicates which are linear threshold
functions with respect to @ is denoted by L(®). A perceptron is defined, by
the authors, as a device capable of computing all the predicates in L(®) for
some family @. In Sections 5 and 6 we discuss the relation of perceptrons
so defined to the Perceptrons introduced by F. Rosenblatt.

The order of a predicate ¢ is the least number & for which there exists a set
of predicates ® = {¢} such that ) e L(®) and | S(¢)| < % for all ¢ in ®.
(Note that the number of predicates in @ does not enter into the definition
of order. This will be discussed in Section 6.)

We can now state two theorems.

THEOREM. The “parity predicate” 7| X | is odd™ has order | R |.

THEOREM. Let A,,A,,..., A, be disjoint subsets of R, each containing
4m? points. Then the order of the “one in a box predicate” "[[; | X N 4;| > O
is at least m.

We need a few more definitions. A transformation g on R is a one-to-one
mapping of R onto itself. A transformation g induces, in a natural way, the
set function g(X) = (Jsex 2(s). With the product of transformations defined
in the usual way (gh(s) = g(h(s))), a set of transformations closed under
product and inverse is a group of transformations. Translations are handled
by the agreement that any part of a figure that is carried over the right
boundary of the retina is brought back in at the corresponding place at the
left, and vice versa. Similarly, parts carried over the top re-enter at the bottom
and vice versa. That is, after a figure in R has been translated, the X and ¥V
coordinates of its points are reduced to their residues modulo A/ and N,
respectively. Thus, the retina is wrapped onto a torus, where the translations
become a finite transformation group. If the figures and the translations are
“small” relative to the retina, it is expected that the “local structure” of the
toroidal retina will be in close agreement with that of the plane retina.

Given a group G = {g} of transformations, a predicate i is invariant
under G if ( g(X)) = (X) for every g in G and every subset X of R.
A group G is transitive if for every pair (s, ) in R X R thereis a g in G such
that g(s) = ¢.

THEOREM. The ‘‘counting predicates” " X| < M' and 7| X | > M
(where M is some number) are of order ome. These are the only first-order
predicates invariant under a transitive group.

Most of the predicates we shall meet, e.g., "X is a convex set!, "X is a
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connected set’, TX has a hole’, etc., can be described without explicit
reference to the size and shape of the retina R. If a predicate is of order <k,
regardless of the size and shape of the retina, then we say that the predicate
is of finite order. (To be perfectly rigorous we should say that we have a class
of retinas R = {R} and a class of predicates, one for each R. If the orders of
all these predicates are bounded, then the class is of finite order. Since no
confusion is likely to arise, the simpler locution is used.) For example, it
follows from the theorems cited above that the parity predicate and the
one-in-a-box predicate are not of finite order. The counting predicate is
of finite order, in fact of order one.
The logical operators @, =, A, v are defined by

rp @Q‘I — rpi (1 — FQ'I) + (1 —_ I"P'I) TQ‘I’
rp = Q1 — rpi FQ"I + (1 — I‘P'I)(l — FQ’I)’
TP A Q'i = rpi FQ'E,

rPv Q": = Pl + I'Q"l — rpi I'QW'

THEOREM. If i, is of order vy and i}, is of order r, then "y @ ' and
Ty = ! are of order <ry +15.

However, there is also the

“AND-OR” THEOREM. There exist predicates , and i, , each of order one,
such that "y A ' and "y v iy are not of finite order.

DrerinNtTION.  Two squares of R are adjacent if they have a common edge.
(Note that corner contacts are not counted.) An image X is connected if for
every two squares s, , §x in X there is a connected path in X joining them
(i.e., a sequence of squares: §;, Sy ,..., Sg, where s, s, are adjacent and

in X).

TueoreM. The predicate "X is connected is not of finite order. In fact it is
of order ZC+/| R |.

DEFINITION. A component of a figure is a maximal connected subset of
the figure. A hole of a figure is a component of the complement of the figure;
here however we allow corner connections®. Note that it is assumed that the
figure is surrounded by an “outside’ that does not count as a hole.

2 It seems that this difficulty could be avoided by using hexagons instead of squares
for the tessellation of the plane. Some of the theory would have to be checked to
verify that no difficulties are thereby introduced.
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Let the Euler number E(X) equal the number of components of X minus
the number of holes of X.

THEOREM. Let M be any number. Then the order of "E(X) < M" < 4;
the order of "E(X) = M < 8.

The authors define a predicate as topologically invariant if it is unchanged
when the figure is distorted without changing connectedness or the inside—
outside relations of its parts. (See Section 4 for some remarks about this
definition.)

THEOREM. Except for trivial predicates, such as "X is (non-) empty, the
only topologically invariant predicates of finite order are functions of E(X).

DerFiNITION.  For a given figure X and any ordered pair of squares (s, t)
in X X X let the difference vector (s, t) be the vector from the center of
square s to the center of ¢. For each such vector #(s, #) = v let #,(X) be the
number of ordered pairs of squares having the difference vector v.

THEOREM. Any translation-invariant predicate of order two is of the form
>yan(X) > 07; hence it is a function only of the ‘‘difference-vector
spectrum” ny(X).

It follows, e.g., that any figure and the figure obtained by rotating it 180°
(which have the same difference-vector spectrum) cannot be distinguished
from each other by a translation-invariant second-order predicate.

TuroreM. The following predicates are of order three: "X is a solid
rectangle'; "X is a hollow rectangle’; "X is a solid square’; "X is a hollow
square!. On the other hand, the “hollow square in context” predicate "one
component of X is a hollow square’ is not of finite order.

THEOREM. Let X, and X, be two figures which are not translationally
equivalent. Then there exists a translationally-invariant predicate s of order
<3 which separates them, i.e., such that J(X;) = 0 < Y(X,).

THEOREM.  Consider the ‘“‘infinite linear” retina, consisting of the squares
0<y<1, j<xa<j+1; j=..,—1,0,1,..}. Consider the class of
finite figures {X}. The predicate "X is symmetrical about some point® is of order
<4. For any given figure X, , the predicate "X is a translate of X, is of order
<2.
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This theorem, concerning the “infinite linear” retina, might be compared
with the third preceding theorem, which states that any second-order,
translationally invariant predicate on a toroidal retina is a function only of
the difference-vector spectrum. Thus, since the two patterns [EEH |
and [Z [EF] have the same difference-vector spectrum, they are not
distinguishable by such a predicate. But according to the last sentence of
the present theorem they can be separated by a second-order, translationally
invariant predicate on the infinite line.

Tueorem. Consider the ‘‘doubly infinite” linear retina comsisting of the
squares i <y <i+1, j<x<j+1; i=0,1; j=..,—101..}
Let X be a finite figure composed of a part U(X) in the upper row of squares and
a part L(X) in the lower row. The predicate "L(X) is a translate of U(X)!
is of order <5.

A somewhat similar theory, but with some differences, is obtained if one
replaces the order limitation of a predicate by a diameter limitation. That is,
instead of the number of points in S(¢) in the definition of order, we use the
diameter of the set S(¢). The authors find that diameter-limited perceptrons
can recognize the predicates "X = R, M| X | > M7, TX is a triangle’,
rX is a rectangle’, "X is a particular figure X', but cannot recognize the
predicate "M, < | X | < M, (which is second-order), or the infinite-order
predicate "X is connected; also, that the only nontrivial topological properties
that can be recognized by a diameter-limited perceptron are the Eulerian
predicates TE(X) > M, TE(X) < M.

3. SuMMARY OF THE Book

The book begins with Chapter 0, Introduction. Here Minsky and Papert
present a clear, crisp, and masterful summary of the book as a whole. In
addition they offer, in their ebullient style, their opinions and sentiments
on the past, present, and future of Perceptrons.

Chapters 1-10 develop the new theory, the highlights of which we gave
in Section 2, above.

Chapter 11 treats learning machines and gives several proofs of the well-
known convergence theorem for perceptrons with error correction.
Considerably more novel is the proof of the Boundedness Theorem in the
nonseparable case. This theorem can be stated as follows:

Let V be a vector space with an inner product. Let F = {¢} be a finite set of
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vectors in V. Let v, be an arbitrary vector in V and define recursively v,,; =
v; + b, , where ¢, is any vector in F such that ¢, - v; < 0. Then the vectors v,
stay bounded; in fact there is a number M depending on the set F, but not on v, ,
such that || v; || < ||vll + M for i =1,2,....

This theorem was conjectured by Nils Nilsson and, independently, by
Terry Beyer. A proof was offered by Bradley Efron (1964), but it was rather
difficult to follow and was never published in a standard journal. The
literature has therefore lacked a clear and rigorous proof. Minsky and Papert’s
penetrating analysis goes a long way towards providing one. (But see the
remark in Section 4, below).

Chapter 12 contains a general discussion of linear separation, learning,
and heuristics. Also included are estimates of the storage capacity and
computing time required by a variety of algorithms, such as maximum
likelihood, isodata, template matching, and nearest neighbor. Layered
machines, Samuel’s checker player, neuronal models, hash coding, and
incremental methods are briefly discussed.

In the final chapter, 13, the authors expound their general views on
perceptrons and pattern recognition. They also recount the development
of their ideas on the subject. The book ends with Bibliographic Notes, in
which the authors comment briefly on some of the well-known papers in

this field.

4. DETAILED NOTES FOR THE PROSPECTIVE CAREFUL READER OF THE BooOk

This section of the review is directed to those who will read the book
carefully and is intended to help them over misprints, lacunae, ellipses,
etc. Notation: An asterisk following the number of a line denotes that number
of lines from the bottom of the page.

Page 26, line 14*, (i.e., 14 from bottom) for that read than.

Page 26, lines 5%, 6%, change many predicates to every predicate.

Page 31, line 9*, add except for the mask of the empty set, which has order
zero.

Page 32, line 3%, the inequality should read 0 < M < | R/, for the
result is not true if M = 0 or M = | R|. The predicate then is, in fact,
of order one.

Page 43, line 1, mentions the “group of all rotations about all points
in the plane”. This is not a group, since the product of two equal but opposite
rotations about two distinct points is not a rotation about a point in the plane,
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but a translation. Adjoining the rotations about the point at infinity (i.e.,
the translations) will complete the group.

Page 58, line 3, add except, possibly, the mask of the empty set.

Page 60, line 2, 1| R |[*/3 should be (| R |/4)!/3. Furthermore, in the
“one-in-a-box’’ theorem, page 59, line 1*, one can replace 4m? by (2m — 1)2.
Also, it is easy to show that the order of ¢ is equal to m.

Page 65, lines 8%, 2%, interchange the arguments in f( , ). The proof given
applies only for N odd, but an easy proof can be made if NV is even.

Page 68, line 3%, 2*, replace P by O and it by P.

Page 71, line 1, change “by the” to “by a topologically invariant”.

Page 74, line 6, after path add in the figure.

Page 75, lines 13, 14, replace X by Y.

Page 78, line 10, replace == - € by = -+ ¢

Page 78, last line, and p. 79, first line, interchange R with R.

Page 80, lines 11, 12, interchange “on R with “on R”.

Page 80, line 17, for 2n read 2n + 2).

Page 81, line 3, replace (1/12) | R| by (1/12) | R| — 1.

Page 84, lines 2, 3, it seems that one can replace 5z by 3z, and 2z by =
(by running the first half about the left end and the second half about the
right end).

Page 84, line 6, replace n = S by n = 4.

Let P(X) denote the predicate "X is connected or X contains a hole’.
Then the assertion on the bottom of page 85 that “P(X) is of finite order,”
seems to be incorrect. Apparently the authors felt that the assertion followed
from page 89, line 10, where it is shown that the predicate TE(X) = M is
of finite order. But these are not the same predicates for any value of M.
Even though (E(X) = 1) implies (P(X) is true), the converse does not hold.
In fact Theorem 5.9 (page 92), stating that “The only [nontrivial—HDB]
topologically invariant predicates of finite order, are functions of the Euler
number E(X)” contradicts the assertion. For we have E(X) = 2 if X has
two components and no holes, or if X has three components and one hole.
But in the first case P(X) is false, while in the second P(X) is true. Thus
P(X) is not a function of E(X).

It might seem more natural to define a topological transformation as
a one-to-one mapping (like the other transformations) which preserves
adjacency and, perhaps, the “outsideness”; and to say that a predicate ¢ is
topologically invariant if it is invariant under topological transformations.
Then however Theorem 5.9 (cited just above) would no longer be true,
because, e.g., the counting predicate 7| X | < M7 is of order one and is
invariant under any group of one-to-one transformations, but clearly it is
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not a function of the Euler number. Thus the authors have a reason for
choosing their definitions as they do, but it would seem more natural for
topological invariance to be less restrictive than invariance under the full
permutation group, which allows discontinuities and tearing. This suggests
the following question, which is not treated in the book. Which (one-to-one)
transformations of a finite toroidal grid preserve adjacency and outsideness ?
Clearly we have the translations, reflections in horizontal or vertical lines
or through a center, products of the preceding, and, for square grids, rotations
through multiples of 90°. Are there any others? How can the whole class
be characterized ?

In the last nine lines of p. 98 the authors discuss the “tolerance difficulties”
(caused by the finite mesh size) when one tries to deal with rotations other
than multiples of 90° or with affine contractions. However, their definition
of convexity “(ea€ X and b€ X) implies (midpoint [a, 8] € X)” (p. 103)
ignores this difficulty. Moreover, they are using “lattice points” as the points
in R, in which case the midpoint of two lattice points is not always another
lattice point. One can partially get round this difficulty by using closed
squares, as we have, and defining a set X as convex if every line segment
joining the centers of two squares in X has its midpoint in X. Another
definition is that there exists a convex subset of the plane which meets each
square in X and no others; a detailed study can be found in Sklansky (1970)
or Montanari (1970). Minsky and Papert again discuss the tolerance difficulties
on page 134, lines 5-19, and examine convexity further in Section 9.3.

Page 108, line 9, replace orders by sizes of the supports.

Page 109, line 7*, replace ®* by {J; %

Page 109, line 3%, replace ®* by @2

On page 111 the authors define a predicate iz context, by
Peontext(X) = TH(Y) for some component Y of X,

(I have added the second Y and deleted the word connected—HDB.) This
definition is not completely satisfactory. For example, take a disconnected
figure, such as the character “i”. Let the predicate (X)) = "X is a
translate of “4>7, Then yiyin exy is always false. Similarly if " (X) = "X is
a translate of “@”7 then a figure consisting of “@” with one extra square
connected to it does not satisfy the predicate % .. . The authors do admit
to some doubts about their definition of a “predicate in context”, but these
doubts do not inhibit them from using their definition as the basis for some
rather strong statements on page 112 (lines 3-11) and page 113 (last 10 lines).

On page 118, line 10*, the authors take B; == d -~ 1 and then make the
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parenthetical remark “(We resisted the temptation to write B; = (1/2) d.)”.
I found this remark disconcerting, since I computed B; = (1/2)(d + 1),
for d odd, and (1/2) d for d even, so one can use B; = (1/2)(d -~ 1) in any
case. I still haven’t discerned the source of the authors’ temptation or their
reason for resisting so strongly.

Page 119, lines 15, 16, replace 7 by j and j by k.

Page 136, last line, replace path by pair.

The definition on page 137, line 10, “We choose x;« to be the boundary
point to one’s right when standing on x; and facing the complement of X,”
is ambiguous if, as in the figure (top of page 138), the figure has parts that
are only one square thick. The dotted lines in Figure 9.1 confused me;
they do not seem to agree with the algorithm in the text.

Page 144, line 12, change 2 to 21 - 1, and modify subsequent estimates.

Page 151, line 22, change 3a; to 3wy .

In a book dedicated to mathematically precise exposition, it is something
of a shock to meet the statement (page 160, lines 9*-7*): “Probably this
means that Theorem 10.4.1 is not strictly true, but we do not think the
exceptions are important.”

In Chapter 10, Minsky and Papert show that extremely large weights
are required for certain predicates. It should be noted that the weights could
be reduced if additional layers were used.

Page 166, line 10, replace vector by direction, since any positive multiple
of a solution vector is again a solution vector.

Page 170, line 3, replace dialectrical by dialectical. In the caption of Figure
11.3 replace 4, by 4, .

The proof of the Convergence Theorem (pages 164-175) seems excessively
labored. The briefest proof, based on one by W. C. Ridgeway, is only a few
lines long and may be found in Block and Levin (1970).

Page 175, lines 12-14, insert a minus sign on the right side of the displayed
equation.

Page 175, line 17%, the phrase “after a finite number of transfers” is
incorrect. In fact it is easy to see that for ¢ < 1, a solution is never reached,
since after each step, A - @ is still negative. The algorithm of Kameda (1967),
which converges rapidly to a minimal length solution, deserves to be cited
here.

The proof of the Boundedness Theorem (pages 182-187) is, as has been
mentioned above, a welcome addition to the theory, filling a long-standing
need. The presentation in the text is somewhat disorganized and unclear.
There is one serious flaw, where the authors draw the inference ‘... so that
1ClIl < M,_,;” (page 187, line 17), apparently based on the inequality
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| By + Cll <||Byll + M,_,. This hiatus can be repaired, but it is not
trivial. The reader will find in Block and Levin (1970) a clearer proof, which
is based on the ideas introduced by Minsky and Papert in this section of
the book.

In the discussion of the Bayes procedure (page 193, lines 3*-1*, and in
Section 12.4.2) there appears to be some confusion regarding the relationship
between (a) the hypothesis that the ¢’s are statistically independent, and
(b) the linearity of the discriminant function. The following elementary
derivation will, I believe, clarify the situation.

BayesiaAN DEcISION PROCEDURE, STATISTICAL INDEPENDENCE,
AND LINEAR DiscriMINANT FUNCTIONS

Consider K urns labeled 1, 2,..., K. Each urn contains a collection of patterns {X}; .
(It may happen that the same pattern occurs in more than one urn.) The contents
of each urn are known. One urn is chosen at random but its label is not revealed.
From that urn a pattern X is chosen and revealed. From which urn did it come ?

We must decide on a number & from the set (1, 2,..., K), knowing that a certain
pattern X has been chosen. There are three well-known approaches.

1. The maximum likelihood method decides on the & which maximizes P(X | k),
the probability that pattern X is drawn, under the hypothesis that urn k& was selected.

2. The maximum a posteriori method decides on the k which maximizes the
conditional probability of &, given that X is observed: P(k | X) = [P(X | k) P(k)/P(X)];
or, equivalently, the £ which maximizes P(X | k) P(k). In the special case in which
the a priori probabilities P(k) are equal, method (2) reduces to method (1)

3. Assume that a loss A(k | j) is suffered if we decide on urn k when in fact j was
the urn form which X came. If, when we observe X, we decide on urn %, then the
expected loss is L(k | X) = Z, Mk |7) P(j | X) = Z; Mk |j) [P(X | ) P(j)/P(X)]. The
minimal expected loss method, or the Bayes Procedure, decides on the k£ which minimizes
L(k | X) (or, equivalently, X, A(k |j) P(X |7) P(})).

If A(k |7) = 1 — &, then method (3) reduces to method (2); also L(k | X) is then
the probability of an error if & is decided on when X is observed.
In general then, having observed X, we choose % so as to minimize

K
gk | X) =Y Mk 15) P(X | ) P(j).

=1

For each subset S of R let ¢¢ be the predicate ¢5(X) = "X = S7. Then
K
gk 1 X0 = ¥ Xk 1) PG) (L $50P(S 1)
j=1 s

= ) as(k) $5(X).

<
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Hence we have a discriminant function linear in the ¢’s, with no assumption of inde-
pendence. (Minsky and Papert seem to suggest that linearity requires the assumption
of independence.) In typical applications, most of the coefficients P(S | 7) will be zero.
Therefore the last summation may involve considerably fewer than all 2!R! possible
predicates.

Denoting the retina R by (s; , $3 ,-.., S|g), we can represent X in the form (x; , %3 ,...,
x| Rr}), Where x; is the predicate x,(X) = s, € X. Let us denote the corresponding
random variables by ¢, . Then if the ¢, are independent under each hypothesis j,

K IR|
gk | X) = Y Mk 1) PG) [] P&, = x:19).

If Mk |j7) = 1— &, then we can take logarithms and choose % so as to maximize
h(k | X) = log P(k) -+ Z log P(¢; = x, | k) = log P(k) + Z {x,log P(¢£; =1 k)

+(1—x) log P(¢&, = 0 B}
= Y (R + 0(B),

i

which is a linear discriminant function in the one-point predicates x; .

The analysis in Minsky and Papert follows from the above, if we consider their ¢’s
as if they were &,’s in a second level. The assumption of independence can often be
validated in practice by suitably randomizing the retinal connections, as Rosenblatt did.

On pages 194-199, the nearest-neighbor method is discussed. The authors
would have done well to cite the elegant results of T. Cover (1967b), showing
the effectiveness of this method.

Page 205, line 2%, a factor p; should be inserted on the right side of the
equation.

The figure on page 206 is somewhat misleading; it should be noted that
the input to [T, is TT; ( £45/9:) ¢: -

In Section 12.6 reference should be made to the remarkable finding of
T. Cover (1967a) that, for a large number of patterns in general position,
the number of patterns that can be separated is approximately twice the
number of adjustable weights.

Page 244, line 19, refers to Theorem 11.6. There doesn’t seem to be any
theorem with this number. What is probably intended is the Theorem in
Section 11.9. Similarly on line 23, the reference to Section 11.6 should
probably read Section 11.10.

Page 248, line 15%, change proceduce to procedure.

On page 248 (lines 6*—4*) it is stated that “‘the [perceptron convergence]
theorem would have been instantly obvious had the cyberneticists interested
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in perceptrons known about Agmon’s work.” Since there is nothing in
“Agmon’s work’’ (1954) about termination of the process after a finite number
of steps, this aspect of the theorem at least does not seem to be “instantly
obvious”. Furthermore, it is not clear who ‘‘the cyberneticists” are; but
presumably the authors do not include themselves in this category. One
might wonder why the rebuke does not apply to all those interested in the
perceptron, e.g., Papert (1961), or Minsky and Selfridge (1961), rather than
just to “the cyberneticists”. In this connection one may also wonder about
the remark on page 4 (lines 5*-3%): “We feel, in fact, that the solemn experts
who most complained about the ‘exaggerated claims’ of the cybernetic
enthusiasts were, in the balance, much more in the wrong.” Are the authors
to be counted among the “solemn experts”? (cf. Minsky (1961)).

5. COMPARISON WITH ROSENBLATT’S PERCEPTRONS

Let us compare the perceptrons studied in this book with the Perceptrons
introduced by F. Rosenblatt (1957) and investigated extensively by him and
others over the past fifteen years. (We denote Rosenblatt’s version by italics,
as indicated.)

A perceptron, as defined by Minsky and Papert, is slightly more general
than what Rosenblatt called a simple Perceptron. (While Minsky and Papert
allow all predicates ¢ to participate in the linear threshold function, Rosenblatt
allowed only “neurons”; not every predicate can be realized by a “‘neuron.”)
On the other hand, the simple Perceptron (which consists of a set of inputs,
one layer of neurons, and a single output, with no feedback or cross coupling)
is not at all what a Perceptron enthusiast would consider a typical Perceptron.
He would be more interested in Perceptrons with several layers, feedback,
and cross coupling. Let us take a few moments to explain why this is so.

By 1930 it had become generally accepted that the mind resides in the
brain and the brain is packed with neurons. The threshold response of
neurons and their electrochemical pulses were also known, as was the general
nature of the synapses. Scientists therefore began to look forward to an
explanation of brain functions, such as memory, perception, or reasoning,
in terms of brain structures, such as neurons, synapses, and thresholds.
The classic paper of McCulloch and Pitts (1943) showed that all logical
functions could be effected by simple mathematical abstractions of neurons.
(Incidentally, Kleene (1956), in clarifying the results of McCulloch and Pitts,
introduced the connection between “regular expressions” and ““finite-state
machines,” thus initiating an important part of the field of computer science;
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but these developments turned away from the problem of brain modelling.)
There followed a good deal of discussion on ‘“neuroeconomics”: If the
neurons in the brain were of this simple type, would there be enough of them
to account for brain functions? It was also asked whether the specific
configurations used by McCulloch and Pitts actually occur in the brain.
The answer to both questions appeared to be negative, or at least not
encouraging for brain models of this type. A model proposed by Hebb (1949),
using reverberating cell assemblies, appeared to overcome some of these
difficulties; but Hebb’s model was vague in many details.

One purpose of Rosenblatt’s Perceptrons was to define the Hebb model
more precisely, so that its performance could be analyzed mathematically.
One of the crucial features of Rosenblatt’s machines was the provision for
change in the neural net as the result of its activity. Only by including a
mechanism for change in the net can one hope to achieve a model for memory
and learning. The analysis of complicated networks of this type appeared
to be very difficult. In order to see if a form of learning occurs, even in the
most primitive case, the simple Perceptron was studied first, and for it the
“Perceptron convergence theorem” was proved. This was encouraging, not
because the simple Perceptron is itself a reasonable brain model (which it
certainly is not; no existing Perceptron can even begin to compete with a
mouse!), but because it showed that adaptive neural nets, in their simplest
forms, could, in principle, improve. This suggested that more complicated
networks might exhibit more interesting behavior. Minsky and Papert view
the réle of the simple Perceptron differently: p. 247 (lines 15-17) “... a key
part of the process leading to the convergence theorem was the molding of
the concept of the machine to the appropriate form.” Thus, what the
Perceptronists took to be a temporary handhold, Minsky and Papert interpret
as the final structure.

Another difference seems to stem from a venerable misunderstanding as
to why Rosenblatt used randomized connections. Switching theorists look
for some particular virtue in this arrangment. Finding none, they condemn
the system as inefficient. Except for certain small blessings of independence
mentioned earlier (at the end of the passage in Section 4 on ‘‘Bayesian
Decision Procedures,...””) there is no particular virtue in randomization.
This is precisely the reason it is used! If a randomized net can learn, then
certainly so can a net with carefully specified connections. The postulation
of a highly specific connection scheme obliges the modeller to find such a
network in the brain. He would also have to face such problems as explaining
how functions of damaged parts of the brain are taken over by other parts; or
how one learns to see with inverting eyeglasses. So in the sense of a “worst
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case’” or “minimal constraint” feasibility study, one randomizes the
connections. This approach goes back at least to Craik (1943):

“Models of the brain—on the pattern of a telephone exchange-would be much
more convincing if they did not postulate any particular connections. Such constancy
of connections is very unlikely in view of individual variations in micro-anatomy.

“It is possible that a brain consisting of randomly connected impressionable
synapses would assume the required degree of orderliness as a result of experience,
just as a randomly connected telephone exchange might become usable if any pair
of people could lower the resistance of their line and so get into audible communication,
if they tried often enough.”

It also appears in McCulloch (1951):

“...[Von Neumann] has to be very careful to specify in detail which relays are to
be connected to a given relay to trip it. That is not the case in human brains. Wiener
has calculated that the maximum amount of information our chromosomes can convey
would fill one volume of the Encyclopedia Britannica, which could specify all the
connections of ten thousand neurons if that was all it had to do. As we have 10'° neurons,
we can inherit only the general scheme of the structure of our brains. The rest must
be left to chance. Chance includes experience which engenders learning. Ramon y Cajal
suggested that learning was the growing of new connections.”

The idea is also implicit in Ashby’s (1956) “Law of Requisite Variety,”
where the valuable configurations would become strengthened and useless
ones atrophied.

In recent days, even the autonomic nervous system has been suspected of
learning [Miller (1969), DiCara (1970)]. This belief has been held for some
time in the East.

In some Perceptrons, Rosenblatt (1962) does use specific-connection models,
patterned after the arrangements found by Hubel and Wiesel (1959) in the
cat and Lettvin et al. (1959) in the frog. These do perform better, but in a
certain sense evade the deeper problem of the mechanism of learning.

One may conceive models in two fundamentally different ways. Given
several competing theories, models may be employed to decide which theory
is closest to the observed facts. On the other hand, given an observed function,
one might seek to construct a model which, without regard to accuracy in
detail, exhibits that function. The latter was Rosenblatt’s approach. Since
there exists no model which even remotely imitates brain function,
Rosenblatt’s aim was to devise some model, of no greater complexity than
biological neurons, which might be capable of approximating at least some
elementary brain functions; cf. Block (1962):

¢...Admittedly the model represents an enormous simplification of even the known
brain structure; but if it does not violate the biological constraints (such as the number
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of units, the organization of connections, the reliability of components, the mechanism
of signal transmission, the speed of response, the stability of the performance with
respect to component malfunction or extirpation, the capacity for information storage,
etc.) and if it exhibits even rudimentary brain functions, then, even if it does not in
fact operate in the same manner as the brain does, it still provides at least a possible
explanation of how the brain structure, as we know it at this time, might be organized
to perform these functions.”

The opposite view of the réle of models can be seen in Minsky and Papert
p- 211, line 17:

“Thus the simple anatomy, combined with the membrane becoming permeable
briefly following a nerve impulse, could give a quantity that is an estimator of the
appropriate probability.

“How could this representation of probability be translated into a useful neuronal
mechanism ? One could image all sorts of schemes: ionic concentrations— or rather,
their logarithms!-—could become membrane potentials, or conductivities, or even
probabilities of occurrences of other chemical events. The ‘anatomy’ and ‘physiology’
of our model could easily be modified to obtain likelihood ratios. Indeed, it is so easy
to imagine variants—the idea is so insensitive to details [my italics—HDB]—that we
don’t propose it seriously, except as a family of simple yet intriguing models that
a neural theorist should know about.”

“Insensitivity to details” is a fault in the eyes of someone trying to decide
which among several theories is true; but it is a virtue to someone trying to
find some model, not inconsistent with the known facts, that will function
in a specific way. Both approaches are, of course, legitimate, but a lack of
understanding of the differing perspectives of the parties can lead to much
fruitless debate.

To exhibit the difference in still another way: Suppose that we randomly
scrambled 10 mathematical neurons, furnished inputs, specified reinforce-
ment rules, and observed outputs. Suppose further that we then found that
the mass functioned like a brain; perceiving, thinking, remembering, deciding,
guessing, controlling purposeful behavior, etc. This might be very exciting;
but it really wouldn’t prove anything about how any actual brain works. It is
incorrect in all details; it is too complicated to analyze; it can’t tell us anything
about the function of the hippocampus, or where memories are stored or
how they are called up. It does suggest how a brain might be organized,
but has nothing to contribute to the question of how any living brain is i fact
organized. A Perceptron is not a description of a brain; it is rather a direction
and a hope.

Work on the four-layer Perceptrons has been difficult; but the results
suggest that such systems may be rich in behavioral possibilities, once the
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mathematical tools become available to analyze them [cf. Rosenblatt (1960),
(1964), Block, Knight, and Rosenblatt (1962), Konheim (1963)]. Even more
suggestive are the multilayer machines with feedback (the C-systems and
F-systems of Rosenblatt (1967)). The models studied extensively by Grossberg
(1967-1969), although differing from the Perceptron in several respects
(continuous variables, instead of discrete; linear, instead of a step-thresholding
function, etc.) are nevertheless much closer to the spirit of Rosenblatt’s
Perceptron than is the book under review. The same can be said of other
brain models, such as those of Kabrisky (1966) or Baron (1970a), (1970b).
From this point of view, the potential capabilities of Perceptrons are still
mostly unexplored.

Another indication of this difference of perspective is Minsky and Papert’s
concern with such predicates as parity and connectedness. Human beings
cannot perceive the parity of large sets (is the number of dots in a newspaper
photograph even or odd?), nor connectedness (on the cover of Minsky and
Papert’s book are two patterns; one is connected, one is not. It is virtually
impossible to determine by visual examination which is which). Rosenblatt
would be content to begin to approach human capabilities, and in fact would
tend to regard unfavorably a machine which went beyond them, since it is
human perception he is trying to approximate. Recognition of commonly
occurring shapes, familiar faces, partially obscured objects, the detection of
significant features, etc., would seem to provide more relevant tests than
parity or connectedness. Rosenblatt’s approach would call for quantitative
studies of more natural recognition problems.

While Minsky and Papert enumerate at length the difficulties that such
predicates as parity and connectedness cause for their perceptrons, they
neglect to mention the remarkable ability of Perceptrons to continue to
function reliably even after many of their components have been destroyed.
This capability is inherent in the organization of Perceptrons and does not
require special arrangements. “Reliability of the system in spite of mal-
function of the components” is important to the Rosenblatt viewpoint
because it is common in biological systems but rare in computers, where the
malfunction of a single element generally results in a nonsensical output.

Thus, although the authors state (p. 4, lines 12-14) “we have agreed to
use the name ‘perceptron’ in recognition of the pioneer work of Frank
Rosenblatt.”, they study a severely limited class of machines from a viewpoint
quite alien to Rosenblatt’s. As a result, the title of the book, although generous
in intent, is seriously misleading to the naive reader who wants to find out
something about the general class of Perceptrons.

In summary then, Minsky and Papert use the word perceptron to denote

643/17/5-7
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a restricted subset of the general class of Perceptrons. They show that these
simple machines are limited in their capabilities. This approach is reminiscent
of the mdohel who throws the baby into the furnace, hands the father the
foreskin and says, “Here it is; but it will never amount to much.”

6. CONCLUSIONS

We might address the following comments to the three classes of readers
for whom Minsky and Papert have intended their book.

1. Specialists in “pattern recognition” who are interested in the practical
recognition of visual patterns by computers will find the book of limited
value. Such readers might more usefully consult the books of Kolers and
Eden (1968), Rosenfeld (1969), Grasselli (1970), Cheng et al. (1970), or
Uhr (1966). Although some of Minsky and Papert’s theorems might prove
useful, there seem to be more promising avenues to practical pattern
recognition; as Minsky and Papert indicate, one might be Guzman’s (1968);
others would be Alan Shaw’s (1969), (1970), and David Noton’s (1969),
(1970).

“Learning Machine” enthusiasts will find, unfortunately for their purposes,
that most of the book concerns fixed networks. However, the chapters on
“learning machines” are sprinkled with provocative comments, which many
readers may find stimulating and instructive.

Specialists in “threshold logic” may find the mathematical techniques
useful. Unless they are concerned with visual pattern recognition however,
they may find much of the theory to be outside their domain of interest.

2. 1 had thought that abstract mathematicians might find intriguing
the idea of a computational geometry. Those with whom I have tried to
discuss the subject were not captivated. They objected to the concept of
order as not taking into account the number of predicates used. Thus, for
example, they felt that convexity, although of order three, involved so many
predicates that it really should be of infinite order. In the same way, they felt
that the And-Or Theorem, far from revealing a deep fact about the nature
of geometry, was merely the consequence of a poor choice of the basic
definitions. If a relation as primitive (and as easy to implement technically)
as “‘and” or “or” can, when it operates on two first-order predicates, produce
a predicate of infinite order, then some doubt is cast on the appropriateness
of “order” as a measure of complexity. Also, it is easy to prove that there
exists a set of predicates @ = {¢}, each having only one point of support,
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such that any predicate s € L(L(®)). Does this mean that with two layers,
all predicates are of order one? If not, how does one define order for multi-
layer machines? It seems that there should be a trade-off between logical
depth (number of layers) and complexity in a given layer. This basic relation-
ship still remains to be formulated and explored.

I don’t take too seriously these criticisms offered by pure mathematicians,
recalling the reception accorded Heaviside and Dirac; but the notion of
Computational Geometry did stir up a lot of apathy.

3. For psychologists and biologists, the level of mathematical maturity
demanded will, I believe, make the book somewhat difficult to read. Moreover,
since the types of neural nets that Minsky and Papert study are very restricted,
it seems unlikely that theorems about their limitations can be of much
relevance to psychologists or biologists. It is like demonstrating to a surgeon
that if he wears boxing gloves he cannot possibly operate effectively.

The absence of Exercises or Problems might limit the usefulness of the
book as a classroom text.

As to future research in the new theory: I would expect that the charisma
of the authors will attract many able young workers. I would also expect
that any results which have eluded the mathematical inventiveness of
Minsky and Papert will turn out to be very difficult indeed to establish.
One has the impression that if there were anything further of interest in
this direction, Minsky and Papert would probably have found it! Thus,
one would expect that the next phase of this research will turn toward more
elaborate systems: models having several layers, heirarchical organization,
feature detectors, feedback, etc.

In sum then, Minsky and Papert’s formulation of their theory of perceptrons
is precise and elegant. Their mathematical analysis is brilliant. Their
exposition is lively, often bombastic, and, occasionally, snide (p. 242, lines
14*%-11%, “We were pleased and encouraged by the enthusiastic reception
by many colleagues at the A.M.S. meeting and no less so by the doleful
reception of a similar presentation at a Bionics meeting.”). Two questions
remain:

Will the new subject of “Computational Geometry” grow into an active
field of mathematics; or will it peter out in a miscellany of dead ends?

Will the formulations or methods developed in the book have a serious
influence on future research in pattern recognition, threshold logic,
psychology, or biology; or will this book prove to be only 2 monument to the
mathematical virtuosity of Minsky and Papert ?

We shall have to wait for a few years to find out.
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