Linear Regression and Correlation Notes

Suppose there is a data set of n data points $\left(x_{i}, y_{i}\right)$ where you have plotted these using a scatter plot and it appears that a linear relationship between them is reasonable. Then the least-squares line (regression line) that best fits these data,

$$
\hat{y}=\hat{m} x+\hat{b}
$$

has the regression coefficients \hat{m} and \hat{b} chosen so as to minimize the sum of the square errors

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\hat{m} x_{i}+\hat{b}\right)\right)^{2}
$$

This says that the regression line that "best fits" the data is the line chosen so as to provide the smallest average difference between the data points $\left(y_{i}\right)$ and the the y -values predicted by the regression line $\left(\hat{y}_{i}\right)$.
The values of the regression coefficients are calculated from

$$
\hat{m}=\frac{S_{x y}}{S_{x x}}
$$

where

$$
S_{x x}=\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

and

$$
S_{x y}=\sum_{i=1}^{n} x_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}\right.}{n}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and

$$
\hat{b}=\bar{y}-\hat{m} \bar{x}
$$

and \bar{x} and \bar{y} are the means defined by

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \text { and } \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}
$$

The correlation coefficient is defined to be

$$
\hat{\rho}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}
$$

where

$$
S_{y y}=\sum_{i=1}^{n} y_{i}{ }^{2}-\frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Note that $-1 \leq \hat{\rho} \leq 1$.
A way to interpret this is to defi ne the Total Sum of Squares (TSS) of the data set as

$$
T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

(note that $T S S=S_{y y}$) and the Sum of Squares of the Regression (SSR) as

$$
R S S=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

and note that since y_{i} will not be exactly on the regression line, $T S S>R S S$ (unless the points are exactly on a line in which case $T S S=R S S$). Then the closer the points are to the regression line, the closer TSS is to RSS. The Coeffi cient of Determination is defi ned to be $r^{2}=R S S / T S S$. So as the data points get close to being exactly on a line, RSS gets close to TSS and so r^{2} gets close to 1. When r^{2} is close to 1 , the points are said to be highly correlated which means that a very large proportion ot the Total Sum of Squares is accounted for by the regression (SSR). Thus the Coeffi cient of Determination is a measure of the strength of the straight-line relationship.
It is possible to show that

$$
R S S=\frac{S_{x y}^{2}}{S_{x x}}
$$

and so that

$$
r^{2}=\frac{R S S}{T S S}=\frac{S_{x y}^{2}}{S_{x x} S_{y y}}=\hat{\rho}^{2}
$$

so that the correlation coeffi cient can be thought of as measuring how well as regression line fits a data set.

