ATLSS SESI MODEL: EVERGLADES AND SLOUGH CRAYFISH SESI MODELS

William Loftus, Noble Hendrix and Jane Comiskey

Underlying ecological basis for model:

- Crayfish density and biomass estimates are generally higher for wet prairies, where *P. alleni* predominates, than for slough habitats, where *P. fallax* are more commonly found.
- *P. allen*i tends to occupy more complex habitats that provide more food resources and refuge from predators (e.g. higher plant biomass, higher stem density).
- Water depth is generally negatively correlated with *P. fallax* densities in sloughs, but not with densities of *P. alleni* in wet prairies.
- Densities of *P. fallax*, associated with slough habitats, decreases with increasing depth and prolonged hydroperiod, due in part to increased predation from fish.

The index for crayfish is computed at year's end from 3 factors:

- A static habitat factor, which measures the % of 30-m cells in each 500-m cell that is of suitable FGAP habitat type.
- Hydroperiod for the current year
- Pattern of drydowns over the past 3 years

Habitat factor, Habitat

- The habitat factor, HSI, is set to zero if the 500-m cell contains greater than any of the following percentages (based on classification of the 30-m pixels within each 500-m cell): 1% urban, 15% agricultural, or 60% other unsuitable types. For all other cells, if percent *Muhlebergia* grass > 60%, then HSI = 1 for *P. alleni* and 0.85 for *P. fallax*; If percent *Muhlenbergia* grass < 60%, then HSI = 0.85 for *P. alleni* and 1 for *P. fallax*.
- Unsuitable FGAP habitat types:
 - Mangrove, mixed woodland swamp, agricultural, pine, salt marsh, palmetto, open water, urban

Hydroperiod factor, *Hydroperiod*, for current year:

 The model tracks hydrologic condition through a whole year. For any year for which the hydroperiod is less than 60 days, the SESI is set to 0.

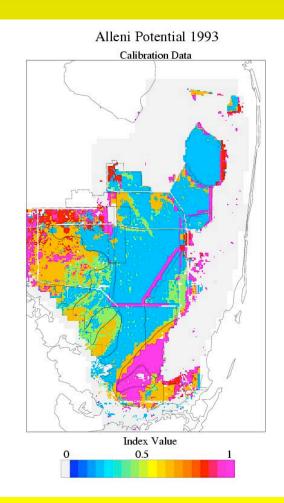
USGS

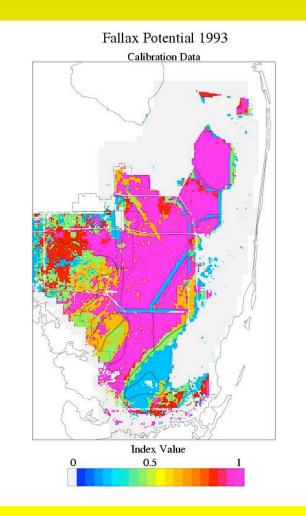
Drydown factor, Drydown

 Cells inundated fewer than 335 days (eleven month hydroperiod) in a given year are considered to have experienced a significant drying event for that year (0 in drying history columns of table on next page). The pattern of drying events over a three year period is used to assess the relative suitability of each landscape cell for the two Procambarus species modeled. The table below lists all 9 possible combinations of the previous three years in terms of whether they had (1) or did not have (0) a drydown.

Table showing *drydown* index as a function of recent history

Drying history			P. alleni	P. fallax
yr-2	yr-1	yr	index	index
0	0	0	1.0	0.2
1	0	0	0.8	0.4
0	1	0	0.4	0.6
0	0	1	0.6	0.4
1	1	0	0.8	0.6
1	0	1	0.6	0.8
0	1	1	0.4	0.6
1	1	1	0.2	1.0
1.1	0		0.6 0.4	0.8 0.6




Total Crayfish SESI:

Crayfish SESI = Habitat x Hydroperiod x Drydown

Example Output

USGS