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Overview

Because any demographic rate can be affected by competition,
density dependence in an IPM can take many forms.

1 Examples 1 and 2: Oenothera and Platte thistle
• Kachi (1983), Rose et. al. (2005)

2 Example 3: Idaho sagebrush steppe
• Adler et. al. (2010)

3 General Theory
4 Case Study: Nonlinear dynamics in Soay sheep model
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Oenothera and Platte thistle
112 5 Density Dependence
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Fig. 5.1 Data on the relationship between total seed production and the number of
new recruits the following year. (A) Oenothera, data from Kachi (1983). The solid line
is the fitted linear regression; the slope is not significantly different from 0 (P > 0.5).
(B) Platte thistle, data and fitted model from Rose et al. (2005). The solid line is
Recruits=Seeds0.67, fitted by negative binomial regression, and the dashed lines are
the 10th and 90th percentiles of the fitted negative binomial distribution. (C) Fit-
ted linear regression without intercept on log-log scale. Solid line is the fitted mean,
and dashed lines are the 10th and 90th percentiles of the fitted Gaussian distribution.
Data for this figure are in OenotheraRecruit.csv and PlatteThistleFig4.csv. Source file:
PlotRecruitmentData.R

5.2 Modeling density dependence: recruitment limitation
in Oenothera and Platte thistle

In a density-independent IPM for a plant that reproduces by seeds, the number
of new recruits in a given year is linearly proportional to the number of seeds
produced the previous year (all else being equal, and assuming that there is no
recruitment from a long-lasting seed bank). But for Oenothera (Figure 5.1A),
data on recruitment suggest that recruitment is independent of how many seeds
were produced the previous year (Kachi 1983). This can’t literally be true:
with no seeds, there could be no new recruits. But apparently enough seeds are
produced each year to saturate all the microsites that have come available for
seedling establishment. As a result recruitment probability is not constant, but
rather inversely proportional to the number of competing seeds.

With R total new recruits1 the seedling contribution to the subsequent year’s
population is Rc0(z′), the number of recruits multiplied by the seedling size
distribution. The IPM iteration is then

n(z′, t+ 1) = Rc0(z
′) +

∫ U

L
P (z′, z)n(z, t) dz (5.2.1)

with P (z′, z) = (1− pb(z))s(z)G(z′, z) as in Chapter 2.
The situation is less simple for another monocarpic perennial, Platte thistle,

Cirsium canescens. Rose et al. (2005) modeled C. canescens to study the
effects of herbivory by the inflorescence-feeding weevil Rhinocyllus conicus
that was introduced as a biocontrol agent for nonnative thistles. Figure 5.1B
shows the recruitment data and the model fitted by Rose et al. (2005),

1 Not to be confused with R, the next-generation kernel.

2 / 31



Oenothera IPM
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Fig. 5.1 Data on the relationship between total seed production and the number of
new recruits the following year. (A) Oenothera, data from Kachi (1983). The solid line
is the fitted linear regression; the slope is not significantly different from 0 (P > 0.5).
(B) Platte thistle, data and fitted model from Rose et al. (2005). The solid line is
Recruits=Seeds0.67, fitted by negative binomial regression, and the dashed lines are
the 10th and 90th percentiles of the fitted negative binomial distribution. (C) Fit-
ted linear regression without intercept on log-log scale. Solid line is the fitted mean,
and dashed lines are the 10th and 90th percentiles of the fitted Gaussian distribution.
Data for this figure are in OenotheraRecruit.csv and PlatteThistleFig4.csv. Source file:
PlotRecruitmentData.R

5.2 Modeling density dependence: recruitment limitation
in Oenothera and Platte thistle

In a density-independent IPM for a plant that reproduces by seeds, the number
of new recruits in a given year is linearly proportional to the number of seeds
produced the previous year (all else being equal, and assuming that there is no
recruitment from a long-lasting seed bank). But for Oenothera (Figure 5.1A),
data on recruitment suggest that recruitment is independent of how many seeds
were produced the previous year (Kachi 1983). This can’t literally be true:
with no seeds, there could be no new recruits. But apparently enough seeds are
produced each year to saturate all the microsites that have come available for
seedling establishment. As a result recruitment probability is not constant, but
rather inversely proportional to the number of competing seeds.

With R total new recruits1 the seedling contribution to the subsequent year’s
population is Rc0(z′), the number of recruits multiplied by the seedling size
distribution. The IPM iteration is then

n(z′, t+ 1) = Rc0(z
′) +

∫ U

L
P (z′, z)n(z, t) dz (5.2.1)

with P (z′, z) = (1− pb(z))s(z)G(z′, z) as in Chapter 2.
The situation is less simple for another monocarpic perennial, Platte thistle,

Cirsium canescens. Rose et al. (2005) modeled C. canescens to study the
effects of herbivory by the inflorescence-feeding weevil Rhinocyllus conicus
that was introduced as a biocontrol agent for nonnative thistles. Figure 5.1B
shows the recruitment data and the model fitted by Rose et al. (2005),

1 Not to be confused with R, the next-generation kernel.

n(z ′, t+1) = Rc0(z ′)+

∫ U

L
P(z ′, z)n(z, t) dz,

R: Total number of new recruits

Rc0(z ′): Seedling contribution to the subsequent year’s
population at size z ′.

P(z ′, z) = (1− pb(z))s(z)G(z ′, z): Density-independent
survival kernel as in Chapter 2.
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Fig. 5.1 Data on the relationship between total seed production and the number of
new recruits the following year. (A) Oenothera, data from Kachi (1983). The solid line
is the fitted linear regression; the slope is not significantly different from 0 (P > 0.5).
(B) Platte thistle, data and fitted model from Rose et al. (2005). The solid line is
Recruits=Seeds0.67, fitted by negative binomial regression, and the dashed lines are
the 10th and 90th percentiles of the fitted negative binomial distribution. (C) Fit-
ted linear regression without intercept on log-log scale. Solid line is the fitted mean,
and dashed lines are the 10th and 90th percentiles of the fitted Gaussian distribution.
Data for this figure are in OenotheraRecruit.csv and PlatteThistleFig4.csv. Source file:
PlotRecruitmentData.R

5.2 Modeling density dependence: recruitment limitation
in Oenothera and Platte thistle

In a density-independent IPM for a plant that reproduces by seeds, the number
of new recruits in a given year is linearly proportional to the number of seeds
produced the previous year (all else being equal, and assuming that there is no
recruitment from a long-lasting seed bank). But for Oenothera (Figure 5.1A),
data on recruitment suggest that recruitment is independent of how many seeds
were produced the previous year (Kachi 1983). This can’t literally be true:
with no seeds, there could be no new recruits. But apparently enough seeds are
produced each year to saturate all the microsites that have come available for
seedling establishment. As a result recruitment probability is not constant, but
rather inversely proportional to the number of competing seeds.

With R total new recruits1 the seedling contribution to the subsequent year’s
population is Rc0(z′), the number of recruits multiplied by the seedling size
distribution. The IPM iteration is then

n(z′, t+ 1) = Rc0(z
′) +

∫ U

L
P (z′, z)n(z, t) dz (5.2.1)

with P (z′, z) = (1− pb(z))s(z)G(z′, z) as in Chapter 2.
The situation is less simple for another monocarpic perennial, Platte thistle,

Cirsium canescens. Rose et al. (2005) modeled C. canescens to study the
effects of herbivory by the inflorescence-feeding weevil Rhinocyllus conicus
that was introduced as a biocontrol agent for nonnative thistles. Figure 5.1B
shows the recruitment data and the model fitted by Rose et al. (2005),

1 Not to be confused with R, the next-generation kernel.

• Solid line represents Recruits = Seeds0.67, fitted by Rose et.
al. (2005) using negative binomial regression.

• The dashed lines represent the 10th and 90th percentiles of
the fitted negative binomial distribution
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Platte Thistle Model Verification Using R

We linearize the Rose et. al. model using a log transformation,

log(Recruits) = 0.67 log(Seeds)

and model it by fitting a negative binomial generalized linear model
to the data under a log link function.

5.2 Modeling density dependence: recruitment limitation 113

Recruits=Seeds0.67. The variance appears to increase very rapidly with the
mean, so Rose et al. (2005) used negative binomial regression to fit the model
(Poisson regression also has variance increasing with the mean, but not fast
enough: a Poisson regression fitted to these data has very high overdisper-
sion). The Rose et al. recruitment model is linearized by log-transformation
(i.e., log Recruits = 0.67 × log Seeds). So having set up a data frame Platte
in PlotRecruitmentData.R with variables seeds and recruits, the model can be
fitted by regressing recruits on log seeds with a log link function:

PlatteNB1 <- glm.nb(recruits ∼ log(seeds),link="log",data=Platte)
PlatteNB2 <- glm.nb(recruits ∼ log(seeds)-1,link="log",data=Platte)

The intercept coefficient is nonsignificant in PlatteNB1, which leads to
PlatteNB2 and the Rose et al. model with exponent coef(PlatteNB2)[1]= 0.67.
The dashed curves show the 10th and 90th percentiles of the fitted distribution,
which should (and do) contain most of the observations.

But let’s back up and ask: is that a reasonable model? The eye is pretty good
at telling whether or not a relationship is linear. So let’s look at a log-log plot,
Figure 5.1C, and there’s no sign of nonlinearity. When we fit a linear regression
on log-log scale, the intercept is small and not significantly different from zero,
so we re-fit without an intercept:

PlatteLN1 <- lm(log(recruits) ∼ log(seeds)-1,data=Platte)

The fitted regression is log Recruits= 0.62×log Seeds, which is equivalent to
Recruits=Seeds0.62. And again, the percentiles of the fitted model encompass
most of the data. Given the small number of observations, it seems prudent not
to consider more complicated models.

The log-log and negative binomial regression curves have different exponents,
0.62 and 0.67, respectively. The larger exponent predicts 25% to nearly 50%
more recruits for Seeds between 100 and 3000. That’s a big enough difference
to be worth thinking about. It happens because the log-log regression predicts
the mean of log Recruits, while the negative binomial regression predicts the
log of mean Recruits, and those are not the same thing (link=log specifies how
the mean depends on the linear predictor in a GLM, but it doesn’t transform
the response). If log Recruits is Gaussian with mean µ and variance σ2, then

Recruits has mean eµ+σ2/2. The log-log regression has residual variance σ2≈
0.6, and e0.3≈ 1.35. So the log-log regression really implies that the mean of
Recruits is 1.35 Seeds0.62, which is numerically much closer to the Rose et al.
model. All in all, then, the Rose et al. recruitment model seems reasonable.

The rest of the IPM was developed in the usual way, using 13 years of data
on marked individuals in five 144 m2 plots in the Sand Hills of Nebraska. Ad-
ditional flowering plants outside the plots were sampled destructively each year
to determine the relationship between size and seed set. The size measure was
the log-transformed root-crown diameter (maximum value on two censuses in
May and June). This is a pre-reproductive census, so the life cycle and IPM
structure are the same as for Oenothera. The fitted demographic models are
summarized in Table 5.1. The somewhat complicated seed set function b(z) is

The model was verified by fitting a linear regression model on a
log-log scale.
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Recruits=Seeds0.62 . And again, the percentiles of the fitted model encompass
most of the data. Given the small number of observations, it seems prudent not
to consider more complicated models.
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more recruits for Seeds between 100 and 3000. That’s a big enough difference
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0.6, and e0.3 ≈ 1.35. So the log-log regression really implies that the mean of
Recruits is 1.35 Seeds0.62 , which is numerically much closer to the Rose et al.
model. All in all, then, the Rose et al. recruitment model seems reasonable.

The rest of the IPM was developed in the usual way, using 13 years of data
on marked individuals in five 144 m2 plots in the Sand Hills of Nebraska. Ad-
ditional flowering plants outside the plots were sampled destructively each year
to determine the relationship between size and seed set. The size measure was
the log-transformed root-crown diameter (maximum value on two censuses in
May and June). This is a pre-reproductive census, so the life cycle and IPM
structure are the same as for Oenothera. The fitted demographic models are
summarized in Table 5.1. The somewhat complicated seed set function b(z) is

producing the equation, Recruits = 1.35 · Seeds0.62
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Demographic Rate Functions for Platte Thistle IPM

Demographic rate Formula

Flowering probability pb(z) logit pb = −10.22 + 4.25z

Seed set b(z) b = exp(−0.55 + 2.02z) × (1 + ε(z)/16)−0.32

Mean weevil eggs per plant ε(z) = exp(e0 + 1.71z)

Seedling size c0(z′) z′ ∼ Normal(µ = 0.75, σ2 = 0.17)

Survival s(z) logit s = −0.62 + 0.85z

Growth G(z′, z) z′ ∼ Normal(µ = 0.83 + 0.69z, σ2 = 0.19)

where
1 z: The measure of the log-transformed maximum root crown diameter,
2 ε: The mean number of weevil eggs oviposited on a plant of size z; the

intercept ε0 varied over time as the weevil infestation developed.
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Platte Thistle IPM Construction

We again use a density-independent survival kernel P,

P(z′, z) = (1 − pb(z))s(z)G(z′, z).

To compute the new recruits at time t + 1, we first compute the total
number of seeds produced at time t,

S(t) =

∫ U

L
pb(z)b(z)n(z, t) dz,

producing S(t)0.67 new recruits with size distribution c0(z′).

A complete iteration yields the IPM,

n(z′, t + 1) = c0(z′)
(∫ U

L
pb(z)b(z)n(z, t) dz

)
0.67

︸ ︷︷ ︸
New Recruits

+

∫ U

L
P(z′, z)n(z, t) dz︸ ︷︷ ︸

Survivors
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Platte Thistle IPM Predictions

5.3 Modeling density dependence: Idaho steppe 115
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Fig. 5.2 Predicted effects of R. conicus weevil infestation on Platte thistle. (A) Equi-
librium size distributions as weevil abundances increase over time. The four curves cor-
respond to four values of the intercept e0 in the relationship between plant size and
mean number of weevil eggs. Those e0 values are the average of the estimated values in
Table 2 of Rose et al. (2005) for the time periods indicated. (B) Projected changes in
equilibrium total thistle population as a function of mean weevil eggs per plant; curves
were drawn by increasing e0 beyond the empirical estimates and computing projected
total population and mean weevil eggs per flowering plant at steady state. Solid curve
uses the estimated negative binomial distribution of eggs per plant, as in (A); the four
open circles correspond to the size distributions in (A). Dashed curve assumes that all
plants have the expected number of weevil eggs given their size. Source files: Platte Demog
Funs.R and Platte Calculations.R

eggs means that some fraction of the large plants have low weevil load and
produce many seeds. From the weevil’s perspective, their highly clumped distri-
bution means that most weevils are sharing a plant with a lot of other weevils,
which reduces the mean damage per weevil. If we remove this effect of clumping
from the model by giving all thistles the average weevil load for a plant of their
size, the impact of weevils becomes much larger (Figure 5.2B, dashed curve).

5.3 Modeling density dependence: Idaho sagebrush steppe

While plants are standing still and waiting to be counted they can also be
measured, so the data to build an IPM are often straightforward to get (although
it might involve a great deal of hard work). But a plant’s neighbors also sit still,
and a plant’s fate is often strongly affected by the size, location, and species of
nearby plants. Our final and most complex case study of density dependence
is neighborhood competition among the four dominant plant species in Idaho
sagebrush steppe, based on work by Peter Adler and collaborators (including
SPE). This model includes density dependence in multiple vital rates and a
“mean field” approximation for neighborhood competition that circumvents the
need for a spatially explicit model. It also exposes some deficiencies in our
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Idaho Sagebrush Steppe
116 5 Density Dependence

Artemisia tripartita
Hesperostipa comata
Poa secunda
Pseudoroegneria spicata
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Fig. 5.3 Four examples of mapped quadrats from the Idaho sagebrush steppe data set
(Zachmann et al. 2010). The heading on each panel gives the quadrat number and year.
Shapefiles for these maps were provided by Peter B. Adler (personal communication).
Source file: PlotShapefiles.R

current toolkit for demographic modeling. Instead of following our example, we
encourage you to think about how you could do better.

A primary goal of the modeling was to compare the strengths of inter- and
intra-specific competition among the dominant species. Whether these are sim-
ilar or different in strength is the central difference between “neutral” and
“niche” theories of community structure, but there are very few cases where this
comparison has actually been made (Adler et al. 2010). The dominant species
in the community are a shrub (Artemisia tripartita) and three C4 bunch grasses
(Hesperostipa comata, Poa secunda, Pseudoroegneria spicata). Twenty-six per-
manent 1m2 quadrats were mapped with a pantograph during most growing
seasons from 1923 to 1957, and again in 1973, by scientists at the US Sheep
Experiment Station. These data (Zachmann et al. 2010) were digitized to GIS

IPM Goals:
• Compare the strengths of inter-

and intra-specific competition
among the dominant species.

• Remark on how the results of
neighborhood competition may
support the “neutral" or “niche"
theories of community structure.

• Model density dependence of
multiple vital rates spanning all
stages of plant life: survival,
growth, and recruitment.
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Q13   1935 Q15   1957

Fig. 5.4 Representation of genets in four quadrats from the Idaho sagebrush steppe
data set (Adler et al. 2010). The heading on each panel gives the quadrat number and
year. Data files were provided by Peter B. Adler (personal communication). Source file:
MakeOverlapMaps.R

shape files.2 Figure 5.3 shows four examples. The polygons represent mapped
canopy cover for the shrub and basal cover for the grasses. A computer program
grouped the digitized polygons into genets and classified genets as survivors or
new recruits, based on spatial location and overlap with genets present in the
previous year, allowing genets to fragment or coalesce (Adler et al. 2010). For
modeling, each genet was represented by a circle having the same total area as
the genet, centered at the centroid of the genet (Figure 5.4).

The richness of this data set made it possible to detect and model density
dependence at all stages: survival, growth, and recruitment.

2 Available presently at knb.ecoinformatics.org/knb/metacat/lzachmann.6.36/ knb.

Left: Mapped quadrats from the Idaho sagebrush steppe data set (Zachmann et al. 2010).

Right: Genets in four quadrats from the Idaho sagebrush steppe data set (Adler et al. 2010).
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Idaho Sagebrush: Vital Rates

The vital rates of interest in applying density-dependence to are
1 Survival,
2 Growth,
3 Recruitment.

For each of the four dominant species, each vital rate of interest
will be modeled as a function of

1 The log genet area z,
2 Competitive pressure W ,
3 Quadrat group (a categorical variable identifying a cluster of

nearby quadrats).
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Idaho Sagebrush: IPM Construction
Genet survival probability s in year t and quadrat g:

logit(sij) = γjt + φjg + βj,tzij + Wij

Total competitive pressure (density-dependent) on genet ij is

Wij =
∑

m

∑
k

wij,km,

where wij,km is the competitive pressure on genet i in species j ,
from genet k of species m and has form,

wij,km = ajme−αjmd2
ij,kmAkm

dij,km: Distance between the centers of genets ij and km,

Akm: Untransformed area of genet km,

ajm: Interspecific competition coefficient of species j and m.
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Idaho Sagebrush: Parameter Estimation

αjj values were fit by logistic regression, assuming only
intraspecific competition.

5.3 Modeling density dependence: Idaho steppe 119
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Fig. 5.5 Goodness of fit (AIC) for a set of logistic regression models of varying complex-
ity for survival of (A) Artemesia tripartita and (B) Pseudoroegneria spicata, as a function
of the intraspecific spatial scale parameter αjj . The x-axis is rjj = 1/

√
αjj , which we

call the “competition radius” because the strength of competition between two genets
depends on their distance d relative to rjj . Source files: PSSP survival Gaussian alpha.R and
ARTR survival Gaussian alpha.R

1. In the Effects model αjm ≡ αmm: each species has a characteristic zone of
influence on other genets, regardless of their species.

2. In the Response model αjm ≡ αjj : each species has a characteristic zone
within which it is affected by other genets, regardless of their species.

3. In the Interaction model αjm = (αjj + αmm)/2.

These alternatives were compared using the same model structure with the best-
fitting single species model for each species (e.g., the one with the lowest AIC
in Figure 5.5), but including all four species in W . The difference between the
alternatives was small (as we’ll see, this is because interspecific competition is
relatively weak) but the Effects model was best for most species, so we went
with that.

Having specified all of the αjm values, the rest is regression modeling, fit-
ting and evaluating models with different subsets of the possible predictors
and interactions, and different coefficients allowed to vary between years. Equa-
tion (5.3.3) is the final form for survival, and similar models were fitted for
growth (a Gaussian distribution with size-dependent variance) and fecundity
(negative binomial distribution of offspring per quadrat). We’ll spare you the
details and get on with the rest of the story.

With all of the demographic rates modeled for each species, it is then straight-
forward (in principle!) to implement a spatially explicit, individual-based model
(IBM) for the community. But in that kind of model, each genet’s demogra-
phy depends on the location, size, and species of every other genet. With N
genets, that means N 2 calculations at each time step just to get the compet-
itive pressures wij,km, and N(N − 1)/2 distances that need to be stored or
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Idaho Sagebrush: Parameter Estimation

αjj values were fit by logistic regression, assuming only
intraspecific competition.

To estimate the remaining twelve αjm values, we consider three
possible reductions:

1 Effects model: αjm ≡ αmm meaning each species has a
characteristic zone of influence on other genets, regardless of
their species.

2 Response model: αjm ≡ αjj meaning each species has a
characteristic zone within which it is affected by other genets,
regardless of their species.

3 Interaction model: αjm = (αjj + αmm)/2.

14 / 31



Idaho Sagebrush: Parameter Estimation

αjj values were fit by logistic regression, assuming only
intraspecific competition.

To estimate the remaining twelve αjm values, we consider three
possible reductions:

1 Effects model: αjm ≡ αmm meaning each species has a
characteristic zone of influence on other genets, regardless of
their species.

2 Response model: αjm ≡ αjj meaning each species has a
characteristic zone within which it is affected by other genets,
regardless of their species.

3 Interaction model: αjm = (αjj + αmm)/2.

15 / 31



Idaho Sagebrush Steppe IPM

The Model:

Genet Survival Probability: logit(sij) = γjt + φjg + βj,tzij + Wij

Total competitive pressure on genet ij : Wij =
∑

m

∑
k

ajme−αjmd2
ij,kmAkm.

Equations not listed explicitly in the chapter:

1 Growth: "A Gaussian distribution with size-dependent variance"

2 Fecundity: "A negative binomial distribution of offspring per quadrat"

Problem: Computationally expensive to compute the spatially
explicit Wij .
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Idaho Sagebrush: Mean Field Approximation

Using a “mean field" approximation for genet location, the
computation complexity is reduced:

W̄j = π
∑

m

ajmΦm/αjm,

where Φm is the fractional cover of species m.

Assumes plants are distributed at random, except circles that
represent conspecific genets cannot overlap.
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Community Structure Theoriess

Neutral theory: Species similarities are more important than
their differences. This implies:

1 Species are so evenly balanced that random drift to extinction
will be overcome by speciation.

2 Nothing much would change if species were somehow less
different than each other.

Niche theory: Species differences are essential to
coexistence, and if species were somehow made less
different from each other it would change everything.
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An Embarrassment of Niches
5.4 Theory 121

Table 5.2 Estimated interaction coefficients ajm for recruitment in the Idaho sagebrush
steppe IPM, from Table 1 of Adler et al. (2010). Species codes ARTR:Artemisia tripar-
tita, HECO:Hesperostipa comata, POSE: Poa secunda, PSSP:Pseudoroegneria spicata.
The entry in row j, column m specifies the impact of species m cover on recruitment by
species j. Asterisk indicates a coefficient that is different from zero at significance level
α = 0.05.

ARTR HECO POSE PSSP

ARTR -0.0731* -0.2425* -0.2911 -0.0360
HECO 0.0224 -0.5471* -0.2035 -0.0541
POSE 0.0041 -0.1155* -1.1114* -0.0032
PSSP 0.0389* -0.1330* -0.1576 -0.6007*

in the same column. These differences are much larger than what is required
for all four dominant species to coexist stably in the model (Adler et al. 2010).
Adler et al. called this “an embarrassment of niches,” a pun4 on “embarrassment
of riches.” Chu and Adler (2015) recently extended this analysis to five grass-
land and shrubland communities, again finding that niche differences (primarily
at the recruitment stage) were far larger than needed to stabilize coexistence
among common co-occurring grass species.

To which a Neutral Theory proponent might say: so what? We all know
that species are different, but that doesn’t mean that the differences actually
matter. The Idaho steppe IPM said that the differences do matter. With niche
differences removed by setting ajm = amm for all j and m, A. tripartita and
P. spicata declined rapidly in the IPM, reaching near-zero cover in a century
or less (Adler et al. (2010), fig. S10). Without the stabilization by interspecific
niche differences, half of the dominant species would be quickly lost.

The differences also matter for forecasting the effects of climate variability
and change (Adler et al. 2012). Some species have very strong negative fre-
quency dependence in population growth, because intraspecific competition is
much stronger than interspecific competition. Others have weaker frequency de-
pendence. Perturbation analysis and numerical experiments showed that species
with weaker frequency dependence are more sensitive to indirect effects of cli-
mate variation that directly affects other species in the community.

5.4 Theory

There is an enormous literature about nonlinear difference equations and nonlin-
ear matrix projection models (see Caswell 2001, Chapter 16 for an introduction).
But there is very little for continuous-state IPMs, and much of it was motivated
by the Platte thistle model (5.2.3) in which competition only affects seedling
establishment. To generalize somewhat, the model can be written in the form

n(z′, t+ 1) = c0(z
′)pr(N(t))N(t) +

∫ U

L
P (z′, z)n(z, t) dz (5.4.1)

4 Highly unsuccessful, in our experience.

Columns represent coefficients for the impact of one species
on itself and the others.

Support of Niche theory: The diagonal elements are negative
and larger in magnitude than other elements in the same
column.
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Theory of Density Dependent IPM

A generalization of the Platte thistle model yields:

n(z ′, t + 1) = c0(z ′)pr (N(t))N(t) +

∫ U

L
P(z ′, z)n(z, t) dz

where N(t) represents total seed production,

N(t) =

∫ U

L
pb(z)b(z)n(z, t) dz

1 pr : The density-dependent recruitment probability; assumed
to be a decreasing function of N .

2 P: The density-independent survival kernel.
3 F (z ′, z,N) = pr (N)c0(z ′)pb(z)b(z): The density-dependent

reproduction kernel.
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Persistence or Extinction?

The expectation is the population will persist if a small population
increases.
Population size only affects pr , so if we let pr be pr (0), we can
approximate the dynamics of a very small population and we get a
density-independent kernel, K0(z ′, z)!

K0(z ′, z) = P(z ′, z) + pr (0)c0(z ′)pb(z)b(z)

By assuming K0 satisfies the assumptions for stable population
theory, then either,

1 A small population will increase if R0(0) > 1.
2 A small population will decrease to extinction if R0(0) < 1.
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Persistence or Extinction: R0

Let R0(x) denote the value of R0 for the density-independent IPM
when pr is held constant at pr (x):

n(z ′, t + 1; x) = c0(z ′)pr (x)N(t) +

∫ U

L
P(z ′, z)n(z, t) dz

with kernel Kx (z ′, z) = P(z ′, z) + pr (x)c0(z ′)pb(z)b(z).

By Chapter 3: R0(x) = pr (x)〈pbb, (I − P)−1c0〉

(I − P)−1c0: Distribution function for the expected total amount of
time spent at each size during a lifetime.
〈pbb, (I − P)−1c0〉: Adds up the total seed production at each size
of the lifetime.
pr (x)〈pbb, (I − P)−1c0〉: The total number of recruits produced by
an average individual.
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Persistence or Extinction: Platte Thistle IPM
124 5 Density Dependence
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Fig. 5.6 R0(0) for the Platte thistle model as a function of the expected number of
weevils on a typical-size flowering plant (log root crown diameter z = 2.5). The curve was
computed by varying e0 and computing R0(0) using equation 5.4.4. The arrow shows
the range of e0 values estimated for different years during the study period, with the
largest values coming towards the end as the weevil infestation developed. Source file:
PlatteCalculations.R

exactly how seedling competition is modeled. Whenever the number of new
recruits each year is an increasing but concave-down function of the initial
number of the seeds competing to join the population, the model will converge
to a unique equilibrium from any initial population.

Using these results we can ask: what level of weevil damage would it take to
wipe out Platte thistle? In that model pr(N) = N−0.33. This has the unrealistic
property that pr → ∞ as N → 0. Let’s modify it (for the moment) to pr(N) =
min(N−0.33, 1) so that pr(0) = 1. From (5.4.3) we then have

R0(0) = ⟨pbb, (I − P )−1c0⟩

=

∫

Z

∫

Z

pb(z
′)b(z′)c0(z)(I − P )−1(z′, z) dz′ dz. (5.4.4)

In Figure 5.6, we computed R0(0) for different values of the weevil burden
intercept parameter e0, and plot R0(0) as a function of the predicted mean
weevil burden on a typical-size flowering plant (z = 2.5), given by exp(e0 +
1.71 × 2.5). Over the period of the Rose et al. study (indicated by the blue
arrow) weevil damage began to have an appreciable impact on R0(0). However,
the model projects that it would have to get much worse – more than a thousand-
fold increase in mean weevil load at a typical flowering size – before R0(0)
drops below 1 and the population becomes nonviable. This results from the
high fecundity in the absence of weevil damage (∼ 100 seeds per typical-size
flowering plant) and the highly aggregated weevil distribution that spares many
plants from serious damage unless mean weevil load is extremely high. It also
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Local Stability of Equilibria

We limit our study for when near-equilibrium dynamics are linear
IPMs and where we have a formula for the kernel, K (z ′, z,N), for
N is some measure of total population size (in which some
individuals may count for more than others):

N(t) = 〈W , n〉 =

∫
Z

W (z)n(z, t) dz

Assumptions:

K (z ′, z,N): Density-dependent kernel. The entire kernel can
depend on N .

W : Any smooth nonnegative function.
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Local Stability of Equilibria: Jacobian Kernel

For an N-dependent kernel K (z ′, z,N), the Jacobian kernel
evaluated at equilibrium n̄ with corresponding total population
N̄ = 〈W , n̄〉 is, (Ellner and Rees 2006)

J(z ′, z, N̄) = K (z ′, z, N̄) + Q(z ′)W (z)

where Q(z ′) =

∫
Z

∂K (z ′, z, N̄)

∂N
n̄(z) dz

The near-equilibrium dynamics then are approximated by the
linear system,

n(z ′, t + 1)− n̄(z ′) =

∫
Z

J(z ′, z, N̄)(n(z, t)− n̄) dz

Conclusions: n̄ is locally stable if the eigenvalues of the Jacobian
kernel are all less than 1 in magnitude, and is unstable if any are
greater than 1 in magnitude.

25 / 31



Equilibrium Perturbation Analysis

Question: How is the equilibrium affected by changes in the
kernel entries, vital rate functions, or parameter values?

Sensitivity of N̄ to θ when θ is perturbed: sN̄,θ = −
sλ,θ
sλ,N̄

λ: Population growth rate; dominant eigenvalues of the
density-independent kernel K (z ′, z; N̄).

sλ,N̄ is constant for all perturbations and can be computed by
the general eigenvalues sensitivity formulas (Chapter 4).
When crowding has only negative effects on vital rates,
sλ,N̄ < 0.

In the case when crowding has only negative effects on vital
rates, it is said that the sensitivity of N̄ to the perturbation is
proportional to the sensitivity of λ evaluated at the equilibrium.

26 / 31



Sheep Soay Case Study

To focus our study on density-dependence, we model a "typical
year" deterministic model by setting the time-varying parameters to
their average values.

Density-dependence affects three processes in the kernel
(Chapter 2),

k(z ′, z) = s(z)G(z ′, z) + s(z)pb(z)pr C0(z ′, z)/2

1 The probability a newborn lamb successfully recruits into the
population, pr ,

2 The size of the distribution of newborn recruits, C0,
3 The survival of adults s.

by adding the predictor N(t) =
∫

Z n(z, t) dz to each function.
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Sheep Soay IPM Predictions
130 5 Density Dependence
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Fig. 5.7 (A) The density-dependent rates are adult survival (solid black), recruitment
probability (dashed black), and mean offspring size (dashed blue), plotted here over the
observed range of female densities. Note that offspring size is not log-transformed; adult
survival and offspring size are plotted for a typical-size adult female, z = 2.9. (B) Long-
term population growth rate λ(N); the dashed line at λ = 1 locates the equilibrium
population size N̄ ≈ 323. Source files: Soay DD Demog funs.R and Soay DD IPM calcs.R.

we want to consider. With N = 520 females, which is 125% of the highest
population density in the data, the recruit-size distribution for a mother of size
z = 1 is
rc <- function(z1) c_z1z(z1,1,520,m.par.true)

With a bit of trial-and-error, L = 0.5 is small enough:

> integrate(rc,-Inf,0.5)
0.004430661 with absolute error < 2.3e-07

(A) The density-dependent
rates are adult survival, re-
cruitment probability, and
mean offspring size, plot-
ted over the observed range
of female densities. Note
that offspring size is not log-
transformed; adult survival
and offspring size are plot-
ted for a typical-size adult
female, z = 2.9. (B) Long-
term population growth rate
λ(N); the dashed line at
λ = 1 locates the equilib-
rium pop. size N ≈ 323.
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Equilibrium stability, N̄ = 3235.5 Case study 2C: ungulate competition 133
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Fig. 5.8 (A) Growth of the population starting from 50 females at the steady-state
size distribution for the kernel with N = 50. Increasingly dark curves show n(z, t) at
t = 0, 5, 10, 15, 20. (B) Convergence to the equilibrium. Points show

∫
Z
|n(z, t)− n̄(z)| dz

as a function of t. The slope of the dashed curve shows the predicted rate of convergence
based on the dominant eigenvalue of the Jacobian. (C) Dynamics of total population
size starting from a range of initial population sizes with random initial size distribution.
(D) As in panel C), but starting from the steady-state size distribution for the kernel
with N equal to the initial number of females. Source file: Soay DD IPM calcs.R.

Now it gets more interesting. As ρ increases, a negative eigenvalue increases
in magnitude until it becomes dominant at about ρ = 0.02(Figure 5.9A). The
steady state is still stable, but convergence is (as expected) oscillatory rather
than monotonic (Figure 5.9B). At about ρ = 0.05 the equilibrium becomes
unstable, when the dominant Jacobian eigenvalue passes through -1. In a one-
dimensional map we would expect to see a period-doubling “flip” bifurcation,
producing a period-2 limit cycle, and that’s exactly what happens here (Fig-
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Fig. 5.9 (A) The three Jacobian kernel eigenvalues with largest absolute value as a
function of the steepness parameter ρ that modifies the recruitment probability; all three
are real numbers. Circles indicate the dominant eigenvalue and the dashed horizontal
line at -1 indicates when the equilibrium becomes locally unstable. (B, C) Dynamics of
total population size, as in Figure 5.8D, for two different values of ρ. (D) Bifurcation
diagram, computed by iterating the model for 1000 time steps at each value of ρ and
plotting the last 100 values of total population size as points above the corresponding ρ
value. Source file: Soay Bifurcation Calcs.R

ure 5.9C). As ρ increases further, it’s déjà vu all over again – the model exhibits
a sequence of period-doubling bifurcations leading to chaos (Figure 5.9D) that’s
very familiar from one-dimensional difference equations like the discrete logistic
model x(t+ 1) = rx(t)(1 − x(t)/K).
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Fig. 5.10 (A) The dynamics of total female population N(t), for steepness parameter
ρ = 0.02. The population was iterated for 1000 time steps, starting from 300 individuals.
The graph shows N(t+1) as a function of N(t) for t = 501 to 1000. (B) Size distributions,
normalized to total population N = 1, at times when N(t) was within 1 of its minimum
(black solid curve), maximum (red dashed curve), and mean (blue dotted curve) over
t = 501 to 1000. Numbers in the figure legend are the number of overlaid curves in each
case. Source file: Soay Bifurcation Calcs.R

The similarity to the discrete logistic is not coincidental. In fact, the model’s
dynamics are almost one-dimensional. After initial transients, the changes in to-
tal female population N(t) are almost perfectly described by a one-dimensional
function giving N(t+1) as a function of N(t) (Figure 5.10A). This happens be-
cause the size structure is almost perfectly determined by the total population
size (Figure 5.10B). The black curves are overlaid size frequency distributions
at the 17 times (during the time interval t = 501, 502, · · · , 1000) when N(t) was
within 1 of its minimum value, and they are nearly identical. The same is true
for the times when N(t) was within 1 of its maximum and within 1 of its mean.

These complex dynamics don’t occur in the actual fitted model, so we won’t
pursue it any further. And to actually prove that there is a period-doubling
bifurcation ending in chaos would be extremely difficult, though not necessarily
impossible. In a remarkable paper, Day et al. (2004) give a rigorous computer-
assisted proof of chaotic dynamics in a density-dependent spatial IPM. Day
and Kalies (2013) develop a more general approach for rigorously computing
dynamic properties of integrodifference equations, and apply it to demonstrate
chaos in a density-dependent spatial IPM by computing a lower bound on the
topological entropy of an attractor. The math is way above the level of this
book (and its authors). But the seemingly impossible is starting to happen, and
software implementing those methods is being developed. Before long there may
be tools that let us all analyze complex dynamics in nonlinear IPMs.

31 / 31


