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Overview

Because any demographic rate can be affected by competition,
density dependence in an IPM can take many forms.

@ Examples 1 and 2: Oenothera and Platte thistle
« Kachi (1983), Rose et. al. (2005)

© Example 3: Idaho sagebrush steppe
* Adler et. al. (2010)

© General Theory
© Case Study: Nonlinear dynamics in Soay sheep model
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Oenothera and Platte thistle
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Fig. 5.1 Data on the relationship between total seed production and the number of
new recruits the following year. (A) Oenothera, data from Kachi (1983). The solid line
is the fitted linear regression; the slope is not significantly different from 0 (P > 0.5).
(B) Platte thistle, data and fitted model from Rose et al. (2005). The solid line is
Recruits=Seeds?- 67 fitted by negative binomial regression, and the dashed lines are
the 10t" and 90*" percentiles of the fitted negative binomial distribution. (C) Fit-
ted linear regression without intercept on log-log scale. Solid line is the fitted mean,
and dashed lines are the 10** and 90*" percentiles of the fitted Gaussian distribution.
Data for this figure are in OenotheraRecruit.csv and PlatteThistleFig4.csv. Source file:
PlotRecruitmentData.R




Oenothera IPM
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n(Z,t+1) = Rco(z’)-i—/L P(Z,z)n(z,t) dz,

@ R: Total number of new recruits

@ Rco(Z'): Seedling contribution to the subsequent year’s
population at size Z'.

@ P(Z/,z) = (1 — pp(2))s(z)G(Z, z): Density-independent
survival kernel as in Chapter 2.
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Platte Thistle
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« Solid line represents Recruits = Seeds®®’, fitted by Rose et.
al. (2005) using negative binomial regression.

» The dashed lines represent the 10th and 90th percentiles of
the fitted negative binomial distribution
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Platte Thistle Model Verification Using R

We linearize the Rose et. al. model using a log transformation,
log(Recruits) = 0.67 log(Seeds)

and model it by fitting a negative binomial generalized linear model
to the data under a log link function.

PlatteNB2 <- glm.nb(recruits ~ log(seeds)-1,link="log"”,data=Platte)

The model was verified by fitting a linear regression model on a
log-log scale.

PlatteLN1 <- 1lm(log(recruits) ~ log(seeds)-1,data=Platte)

producing the equation, Recruits = 1.35 - Seeds’-6?
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Demographic Rate Functions for Platte Thistle IPM

Demographic rate Formula

Flowering probability p,(z) logit pp = —10.22 + 4.25z

Seed set b(z2) b = exp(—0.55 4+ 2.022) x (1 + £(z)/16) %%
Mean weevil eggs per plant  e(z) = exp(eo + 1.712)

Seedling size (7)) 7' ~ Normal(y = 0.75,02 = 0.17)

Survival s(z) logit s = —0.62 4 0.85z

Growth G(Z, z) 7' ~ Normal(y = 0.83 + 0.69z, 0® = 0.19)
where

@ :z: The measure of the log-transformed maximum root crown diameter,

@ :=: The mean number of weevil eggs oviposited on a plant of size z; the
intercept £ varied over time as the weevil infestation developed.
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Platte Thistle IPM Construction
We again use a density-independent survival kernel P,
P(Z',z) = (1 — p(2))s(2)G(Z, 2).

To compute the new recruits at time ¢ 4 1, we first compute the total
number of seeds produced at time t,

S(t) = / po(2)b(2)n(z,t) dz,

producing S(t)°¢” new recruits with size distribution co(z’).

A complete iteration yields the IPM,

n(Z t+1) = c(2) </ pu(2)b(z)n(z, 1) dz) 067 /LU P(Z',z)n(z,t) dz

New Recruits Survivors
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Platte Thistle IPM Predictions
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Idaho Sagebrush Steppe
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Fig. 5.3 Four examples of mapped quadrats from the Idaho sagebrush steppe data set
(Zachmann et al. 2010). The heading on each panel gives the quadrat number and year.
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Idaho Sagebrush Steppe
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Left: Mapped quadrats from the ldaho sagebrush steppe data set (Zachmann et al. 2010).

Right: Genets in four quadrats from the Idaho sagebrush steppe data set (Adler et al. 2010).




ldaho Sagebrush: Vital Rates

The vital rates of interest in applying density-dependence to are
@ Survival,
© Growth,
© Recruitment.

For each of the four dominant species, each vital rate of interest
will be modeled as a function of

@ The log genet area z,
© Competitive pressure W,

© Quadrat group (a categorical variable identifying a cluster of
nearby quadrats).

THE UNIVERSITY OF

TENNESSEE



Idaho Sagebrush: IPM Construction
Genet survival probability s in year t and quadrat g:
logit(sj) = vjt + djg + Bj.ezij + Wj

Total competitive pressure (density-dependent) on genet jj is
Wi=3_ D Wikn
m kK

where wj xm is the competitive pressure on genet / in species j,
from genet k of species m and has form,

—aimd?
Wikm = @jme '™ 1k A

@ dj xm: Distance between the centers of genets jj and km,
@ Axm: Untransformed area of genet km,
@ a;n: Interspecific competition coefficient of species j and m.
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Idaho Sagebrush: Parameter Estimation

oy values were fit by logistic regression, assuming only
intraspecific competition.
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Fig. 5.5 Goodness of fit (AIC) for a set of logistic regression models of varying complex-
ity for survival of (A) Artemesia tripartita and (B) Pseudoroegneria spicata, as a function
of the intraspecific spatial scale parameter ;. The z-axis is r;; = 1/,/a;;, which we
call the “competition radius” because the strength of competition between two genets
depends on their distance d relative to 7. Source files: PSSP_survival Gaussian_alpha.R and
ARTR_survival Gaussian_alpha.R
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Idaho Sagebrush: Parameter Estimation

ayj values were fit by logistic regression, assuming only
intraspecific competition.

To estimate the remaining twelve o, values, we consider three
possible reductions:

@ Effects model: ajm = amm Meaning each species has a
characteristic zone of influence on other genets, regardless of
their species.

@ Response model: ajm = oy meaning each species has a
characteristic zone within which it is affected by other genets,
regardless of their species.

@ Interaction model: cjm = (ovj + amm) /2.
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Idaho Sagebrush: Parameter Estimation
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ldaho Sagebrush Steppe IPM

The Model:

Genet Survival Probability: logit(sj) = vjt + ¢jg + 5,1z + W

. .. g
Total competitive pressure on genet ij: Wj = > > agjne™ “mium Ay,
m K

Equations not listed explicitly in the chapter:
@ Growth: "A Gaussian distribution with size-dependent variance"

@ Fecundity: "A negative binomial distribution of offspring per quadrat"

Problem: Computationally expensive to compute the spatially
explicit W.
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Idaho Sagebrush: Mean Field Approximation

Using a “mean field" approximation for genet location, the
computation complexity is reduced:

W=7 am®m/cm,
m

where ¢, is the fractional cover of species m.

Assumes plants are distributed at random, except circles that
represent conspecific genets cannot overlap.
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Community Structure Theoriess

@ Neutral theory: Species similarities are more important than
their differences. This implies:
@ Species are so evenly balanced that random drift to extinction
will be overcome by speciation.
@ Nothing much would change if species were somehow less
different than each other.
@ Niche theory: Species differences are essential to
coexistence, and if species were somehow made less
different from each other it would change everything.
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An Embarrassment of Niches

Table 5.2 Estimated interaction coefficients a ., for recruitment in the Idaho sagebrush
steppe IPM, from Table 1 of Adler et al. (2010). Species codes ARTR: Artemisia tripar-
tita, HECO: Hesperostipa comata, POSE: Poa secunda, PSSP:Pseudoroegneria spicata.
The entry in row j, column m specifies the impact of species m cover on recruitment by
species j. Asterisk indicates a coefficient that is different from zero at significance level
a = 0.05.

ARTR HECO POSE PSSP
ARTR | -0.0731*% -0.2425% -0.2911 -0.0360
HECO | 0.0224 -0.5471*%  -0.2035 -0.0541
POSE | 0.0041 -0.1155%  -1.1114* -0.0032
PSSP | 0.0389*  -0.1330* -0.1576 -0.6007*

@ Columns represent coefficients for the impact of one species
on itself and the others.

@ Support of Niche theory: The diagonal elements are negative
and larger in magnitude than other elements in the same
column.
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Theory of Density Dependent IPM
A generalization of the Platte thistle model yields:

n(Z',t+1) = co(Z')p(N(t))N(t) + /LU P(Z',z)n(z,t) dz

where N(t) represents total seed production,

U
N(t) = /L po(2)b(2)n(2, ) dz

@ p:: The density-dependent recruitment probability; assumed
to be a decreasing function of N.

© P: The density-independent survival kernel.

Q F(Z,z,N) = p/(N)co(z')pr(z)b(z): The density-dependent
reproduction kernel.




Persistence or Extinction?

The expectation is the population will persist if a small population
increases.

Population size only affects py, so if we let p, be p,(0), we can
approximate the dynamics of a very small population and we get a
density-independent kernel, Ky(Z', z)!

Ko(Z',z) = P(Z', 2) + pr(0)co(2')pu(2)b(2)

By assuming Kj satisfies the assumptions for stable population
theory, then either,

@ A small population will increase if Ry(0) > 1.

@ A small population will decrease to extinction if Ry(0) < 1.




Persistence or Extinction: R,

Let Ro(x) denote the value of Ry for the density-independent IPM
when p; is held constant at p,(x):

n(Z',t+1;x) = co(2")pr(x)N(t) + /U P(Z',z)n(z,t) dz
L
with kernel Ky (2, z) = P(Z', z) + pr(x)co(2")pp(2)b(2).

By Chapter 3:  Ro(x) = pr(x){ppb, (I — P)~'cp)
@ (/— P)~'¢y: Distribution function for the expected total amount of
time spent at each size during a lifetime.

@ (pub, (I — P)~'cp): Adds up the total seed production at each size
of the lifetime.

@ p,(x)(ppb, (I — P)~"cy): The total number of recruits produced by
an average individual.
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Persistence or Extinction: Platte Thistle IPM
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Fig. 5.6 Ro(0) for the Platte thistle model as a function of the expected number of
weevils on a typical-size flowering plant (log root crown diameter z = 2.5). The curve was
computed by varying ep and computing Ro(0) using equation 5.4.4. The arrow shows
the range of ep values estimated for different years during the study period, with the
largest values coming towards the end as the weevil infestation developed. Source file:
PlatteCalculations.R
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Local Stability of Equilibria

We limit our study for when near-equilibrium dynamics are linear
IPMs and where we have a formula for the kernel, K(Z', z, N), for
N is some measure of total population size (in which some
individuals may count for more than others):

N(t) = (W,n) = / W(z)n(z,t) dz
z
Assumptions:

@ K(Z',z, N): Density-dependent kernel. The entire kernel can
depend on N.

@ W: Any smooth nonnegative function.
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Local Stability of Equilibria: Jacobian Kernel

For an N-dependent kernel K(Z', z, N), the Jacobian kernel
evaluated at equilibrium n with corresponding total population
N = (W, n) is, (Eliner and Rees 2006)

J(Z,z,N) = K(Z,z,N) + Q(Z)W(=z)
wmmo@q:/gﬂ%iﬂl()
z

The near-equilibrium dynamics then are approximated by the
linear system,

,uu+w—mﬂ:/Ai;mw@o—mw
z
Conclusions: nis locally stable if the eigenvalues of the Jacobian

kernel are all less than 1 in magnitude, and is unstable if any are
greater than 1 in magnitude.
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Equilibrium Perturbation Analysis

Question: How is the equilibrium affected by changes in the
kernel entries, vital rate functions, or parameter values?

S\

Sensitivity of N to 6 when 6 is perturbed: sy, = —

S\ N

@ \: Population growth rate; dominant eigenvalues of the
density-independent kernel K(Z/, z; N).

@ s, j is constant for all perturbations and can be computed by
the general eigenvalues sensitivity formulas (Chapter 4).
When crowding has only negative effects on vital rates,

SA,N < 0.

@ In the case when crowding has only negative effects on vital
rates, it is said that the sensitivity of N to the perturbation is
proportional to the sensitivity of A evaluated at the equilibrium.
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Sheep Soay Case Study

To focus our study on density-dependence, we model a "typical
year" deterministic model by setting the time-varying parameters to
their average values.

Density-dependence affects three processes in the kernel
(Chapter 2),

K(Z,2) = 8(2)G(Z, 2) + s(2)po(2)pr Co(Z 2) /2

@ The probability a newborn lamb successfully recruits into the
population, py,

@ The size of the distribution of newborn recruits, Co,

@ The survival of adults s.

by adding the predictor N(t) = [, n(z,t) dz to each function.




Sheep Soay IPM Predictions
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Equilibrium stability, N = 323
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Non-Linear Dynamics & Chaos
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1-Dimensional Dynamics
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Fig. 5.10 (A) The dynamics of total female population N(t), for steepness parameter
p = 0.02. The population was iterated for 1000 time steps, starting from 300 individuals.
The graph shows N(¢+1) as a function of N(t) for t = 501 to 1000. (B) Size distributions,
normalized to total population N = 1, at times when N(t) was within 1 of its minimum
(black solid curve), maximum (red dashed curve), and mean (blue dotted curve) over

= 501 to 1000. Numbers in the figure legend are the number of overlaid curves in each
case. Source file: Soay Bifurcation Calcs.R




