
Matrix projection model n(t+ 1) = An(t) divides a
population into discrete ages or life-stages (“classes”).

ni(t+ 1) =
∑
j

Aijnj(t)

Aij says:
for each class-j individual “now”, how many class-i
individuals will be present “next year’?

Class-membership must be good individual-level state
variable: predicts individual fates.
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Majority of empirical case
studies are not actually age- or
stage- structured: the “stages”
are size classes.

For plants and many animals
(esp. indeterminate growth),
size is the best single predictor
of demographic fates (survival,
fecundity, growth).
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Platte thistle,

Cirsium canescens

Rose et al. (2005)

the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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Making a matrix projection model

Modeler chooses divisions between size classes, or uses a hybrid
size-stage classification (e.g., size × {Vegetative, Flowering}).

“Binning”: matrix entries are observed transition frequencies. You
count up:

How many in class j were still alive the next year and in
size-class i?

How many offspring did they put into each size class?

One cynic: the matrix is a complicated curve-fit that goes exactly
through every data point...
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But what’s wrong with that? or, how it all started.

Northern Monkshood, Aconitum noveboracense

Herbaceous perennial, listed as threatened.

Modeled by Philip Dixon and Bob Cook (then both at
Cornell).

Size = stem diameter. Grow, shrink, or split.
n1
n2
n3
n4
n5


t+1

=


0.42 0.21 0.18 0.07 0.09
0.18 0.24 0.08 0.11 0.03
0.13 0.32 0.33 0.21 0.04
0.06 0.04 0.31 0.43 0.29
0.03 0.04 0.06 0.20 0.65



n1
n2
n3
n4
n5


t

Matrix entries are observed transition rates and births: 65% of
sampled class-5 individuals were alive the next year, and again
in class 5.
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Eigenvalue elasticity matrix for Monkshood

Elasticity(i, j) =
Percent change in λ

Percent change in Aij
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Eigenvalue elasticity matrix for Monkshood
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What should we do to protect Monkshood?

It all depends on how you choose your size categories
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By the early 1990’s...

Raleigh, NC to Savannah River Ecology Laboratory - Google Maps https://www.google.com/maps/dir/Raleigh,+NC/Savannah+River+Ecology+Laboratory,+Jacks...

1 of 1 2/4/2015 2:22 PM
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How should we choose size categories?
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How should we choose size categories?

Don’t.

the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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Same idea for growth

the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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Fitted linear regression of
size(t+ 1) on size(t)
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Size regression equation = dynamic model for size z

Size “now” (e.g., z = 2, 5 or 8) determines the probability
distribution of size “next year”
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Integral Projection Model (Easterling,Ellner,Dixon 2000)

n(z, t) = distribution of individual size z, L ≤ z ≤ U.

log10 shrub area
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Instead of

ni(t+ 1) =
∑
j

Aijnj(t)

we have

n(z′, t+ 1) =

∫ U

L

K(z′, z)n(z, t) dz

K(z′, z) = s(z)G(z′, z)︸ ︷︷ ︸
Survival & growth

+ F (z′, z)︸ ︷︷ ︸
Reproduction

Over the last 10 years, 75% of published demographic models for
size-structured populations have been IPMs (D. Doak et al. (2021),
Ecological Monographs 91: e01447)
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Monkshood demographic models (Easterling et al. 2000)

z is plant size (stem diameter in mm), z′ is subsequent size.

Demographic process Equation
Adult Survival logit ps = 1.34 + 0.92z
Growth z′ ∼ Gaussian(µ = 0.37 + 0.73z, σ2 = 0.13 + 0.23z)
Offspring number 0.034 + 0.38z
Fraction clonal offspring 0.39
Size distribution, clonal Gaussian(µ = 0.3 + 0.57z, σ2 = −0.005 + 0.192z)
Size distribution, seedlings Uniform[0.15, 0.25]
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Projection kernel for Monkshood
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Elasticity surface for Monkshood
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The two key ideas in IPMs

1 If an individual state variable varies continuously, model it as
continuous. Conceptual model then aligns with the biology,
avoids the never-resolved problem of how to choose size
categories.

2 Instead of binning, the model is based on equations describing
state-fate relationships – usually statistical models fitted to
empirical demographic data. (In principle could be mechanistic
models — “DEB meets IPM” — but this is rare).
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Demographic data analysis is more work than

binning: more time, and a lot more thought. Why

should we bother?
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Why model

We can use everything statisticians know about fitting smooth
functions – which is a lot.

1 Good (and improving) ways to choose model complexity
appropriate for sample size and “noise” level: AIC, WAIC,
cross-validation, etc. This is a feature, not a bug. Binning:
seat-of-the-pants. Proposed algorithms (Vandermeer, Moloney)
are ad hoc, never used.

2 Can estimate multiple sources of relevant variation (treatment,
age, sex, etc.), and include random effects to increase precision
by controlling for unmeasured heterogeneity.

3 Good ways to fit state-fate relationships without assuming a
functional form (e.g., splines) — highly under-exploited.
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The yellow-bellied marmot (Ozgul et al. 2010)
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describing associations between body-mass and demographic (sur-
vival, reproduction probability and litter size) and trait-transition
(growth and offspring body mass) rates. We also tested for the effects
of age class and study period on these rates. Body mass had a signifi-
cant positive influence on most rates in both periods (Supplementary
Figs 4–7). Moreover, the form of some of the body-mass–rate func-
tions also changed over time. Heavier marmots, particularly adults,
survived better in later years (Fig. 2a). Both mean juvenile growth
(from the first to second August of life) and the dependence of
growth on mass increased in later years (Fig. 2b); the resulting
increase in growth was much greater among smaller juveniles. In
addition, heavier females had a higher chance of reproducing in later
years (Fig. 2c).

To understand the population dynamic and phenotypic conse-
quences of these changes, we used a recently developed method, an
integral projection model (IPM)28,29, which projects the distribution
of a continuous trait based on demographic and trait transition func-
tions. Using the fitted functions relating body mass to each rate, we
parameterized two IPMs, one for the pre-2000 period and one for after
2000. Eigenanalysis of the two IPMs captured the observed change in
the dynamics: the annual asymptotic population growth rate (l)
increased from an approximately stable (l 5 1.02) in the earlier period
to a rapidly increasing (l 5 1.18) in the later period (Fig. 1c). The
stable mass distributions for each of the periods captured the observed
increase in body mass in both juveniles (38.2 g, 4.2%) and older age
classes (166.7 g, 5.8%) (Fig. 3a). To identify which demographic or
trait transition function had contributed most to the observed
increase in population growth rate, we performed a retrospective
perturbation analysis of the two IPMs. The observed increase in popu-
lation growth rate was predominantly due to changes in the adult
survival and juvenile growth functions (Fig. 3b).
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for females of the yellow-bellied marmot population. a–c, Time of weaning
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and adult masses are combined (older) in b. Vertical dotted lines delineate
different phases of population dynamics.
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Marmot population trends, from: Ozgul et al. (2010) Coupled
dynamics of body mass and population growth in response to
environmental change. Nature 466: 482 - 485.
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describing associations between body-mass and demographic (sur-
vival, reproduction probability and litter size) and trait-transition
(growth and offspring body mass) rates. We also tested for the effects
of age class and study period on these rates. Body mass had a signifi-
cant positive influence on most rates in both periods (Supplementary
Figs 4–7). Moreover, the form of some of the body-mass–rate func-
tions also changed over time. Heavier marmots, particularly adults,
survived better in later years (Fig. 2a). Both mean juvenile growth
(from the first to second August of life) and the dependence of
growth on mass increased in later years (Fig. 2b); the resulting
increase in growth was much greater among smaller juveniles. In
addition, heavier females had a higher chance of reproducing in later
years (Fig. 2c).

To understand the population dynamic and phenotypic conse-
quences of these changes, we used a recently developed method, an
integral projection model (IPM)28,29, which projects the distribution
of a continuous trait based on demographic and trait transition func-
tions. Using the fitted functions relating body mass to each rate, we
parameterized two IPMs, one for the pre-2000 period and one for after
2000. Eigenanalysis of the two IPMs captured the observed change in
the dynamics: the annual asymptotic population growth rate (l)
increased from an approximately stable (l 5 1.02) in the earlier period
to a rapidly increasing (l 5 1.18) in the later period (Fig. 1c). The
stable mass distributions for each of the periods captured the observed
increase in body mass in both juveniles (38.2 g, 4.2%) and older age
classes (166.7 g, 5.8%) (Fig. 3a). To identify which demographic or
trait transition function had contributed most to the observed
increase in population growth rate, we performed a retrospective
perturbation analysis of the two IPMs. The observed increase in popu-
lation growth rate was predominantly due to changes in the adult
survival and juvenile growth functions (Fig. 3b).
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Figure 1 | Trends in the phenology, mean phenotypic trait and demography
for females of the yellow-bellied marmot population. a–c, Time of weaning
(20.17 days per year, P , 0.01) (a), mean 1 August mass (�ZZ) (b), and
abundance in each age class (c). The four age classes are juvenile (,1 yr),

yearling (1 yr-old), subadult (2 yrs-old) and adult ($3 yrs-old). Subadult
and adult masses are combined (older) in b. Vertical dotted lines delineate
different phases of population dynamics.
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Figure 2 | The relationship between body mass and demographic and trait
transition rates. a–c, Effect of body mass on survival (a), juvenile growth
(b) and adult reproduction (c) for pre-2000 (,2000) and post-2000 ($2000)
years. Shaded areas indicate the 95% confidence intervals, and rugs below
and above the graph represent the distribution of the body mass data for
,2000 and $2000, respectively.
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Model predicts:

λ = 1.02→ 1.18

Larger juveniles and
adults (as observed)

Increase in λ after
2000 results from:

Adults are larger

Large adults have
higher survival &
reproduction.
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Why model: cross-classification and gaps in the data

A critical comparison of integral projection and matrix projection
models for demographic analysis
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Abstract. Structured demographic models are among the most common and useful tools
in population biology. However, the introduction of integral projection models (IPMs) has
caused a profound shift in the way many demographic models are conceptualized. Some
researchers have argued that IPMs, by explicitly representing demographic processes as contin-
uous functions of state variables such as size, are more statistically efficient, biologically realis-
tic, and accurate than classic matrix projection models, calling into question the usefulness of
the many studies based on matrix models. Here, we evaluate how IPMs and matrix models dif-
fer, as well as the extent to which these differences matter for estimation of key model outputs,
including population growth rates, sensitivity patterns, and life spans. First, we detail the steps
in constructing and using each type of model. Second, we present a review of published demo-
graphic models, concentrating on size-based studies, which shows significant overlap in the
way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of var-
ious modeling decisions on demographic predictions, we ran a series of simulations based on
size-based demographic data sets for five biologically diverse species. We found little evidence
that discrete vital rate estimation is less accurate than continuous functions across a wide range
of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs
quickly converged with modest class numbers (≥10), regardless of most other modeling deci-
sions. Another surprising result was that the most commonly used method to discretize growth
rates for IPM analyses can introduce substantial error into model outputs. Finally, we show
that empirical sample sizes generally matter more than modeling approach for the accuracy of
demographic outputs. Based on these results, we provide specific recommendations to those
constructing and evaluating structured population models. Both our literature review and sim-
ulations question the treatment of IPMs as a clearly distinct modeling approach or one that is
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used to estimate vital rates (blue boxes, Fig. 1) and the
class number of the resulting matrix (green boxes,
Fig. 1). Previous comparisons of matrix dimension and
parameterization methods have only included matrix
models with a few classes (four to six) and discrete
parameter estimation, and compared them to IPMs
using continuous functions discretized into large matri-
ces (100 classes; Ramula et al. 2009). In contrast, we var-
ied parameter estimation method independently from
class number to ask how each affects model accuracy. In
addition, we tested the effects of the three other model-
ing decisions just mentioned: (1) use of midpoint or esti-
mated median individual sizes for CVR estimation of
average vital rates per class; (2) even or sample-size-ad-
justed class boundaries; and (3) the ways in which dis-
cretized growth probabilities were estimated from CVR

models (Fig. 2). While other issues also influence model
structure and results (see Two Approaches to Fitting
Demographic Models), here we concentrate on this short
list of issues that will influence virtually all models.
We tested the effects of these decisions on three com-

mon demographic outputs: deterministic individual fit-
ness or population growth (lambda, k), individual
longevity (age at which 1% of individuals starting in the
smallest class are still alive), and damping ratio (the
ratio of the magnitudes of the dominant and subdomi-
nant eigenvalues), a measure of the strength and dura-
tion of transient dynamics for populations not at a
stable stage distribution (Caswell 2001). While multiple
other measures of longevity and also of the strength and
length of transient dynamics exist, the measures we
employee have been widely used in the ecological
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If your sample data look like this
(n = 11, 882, no gaps), “binning” to
make a 20× 20 size-structured matrix
is equivalent to making an IPM.
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Cross-classification and gaps in the data

Most data sets are (lots) smaller, but Doak et al. (2021) “showed” that
the same is true with hundreds of observations instead of thousands. Who
needs an IPM?

Doak et al. (2021) used stratified sub-sampling to guarantee that
regardless of sample size, each size class was represented in proportion to
its abundance in the full sample. Because if not. . .

Published Leslie matrix for S. jarrovi:

100% survival at ages 6, 7

0% survival at age 8
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≈ 25% of published matrix models have biologically implausible
discontinuities; many have λ = 1 exactly (as above).

I. Stott, S. Townley, D. Carslake, and D. J. Hodgson. 2010. On reducibility and
ergodicity of population projection matrix models. Methods in Ecology and Evolution,
1:242–252.
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Subsample bistort data: each quintile of size distribution represented in
proportion to abundance in full sample. Compare IPM with 10-size-class
“binning” MPM. Binning (MPM)
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2 

Table S1 Number of individuals observed annually in four 
populations of the perennial herb Astragalus scaphoides 

No. individuals observed 
Year Sheep McDevitt Haynes Reservoir 
2003 126 73 178 184 
2004 116 69 147 236 
2005 126 74 126 254 
2006 110 65 77 235 
2007 130 61 83 239 
2008 121 63 77 228 
2009 134 55 104 223 
2010 150 49 132 220 
2011 135 42 153 194 
2012 61 29 144 122 
2013 45 11 114 110 
2014 19 7 84 63 

Satu Ramula, Natalie Z. Kerr, Elizabeth E. Crone (2020). Using statistics to design and
estimate vital rates in matrix population models for a perennial herb. Population
Ecology 62:53–63.
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Multiple sources of variation: random year effects

require(mgcv);

mixed.surv = gam(surv~ logsize + s(year,bs="re"),

family=binomial, data=X);

fdata =X[X$surv==1,];

mixed.flow = gam(flower~logsize + s(year, bs="re"),

family=binomial, data=fdata);

gdata =X[cdata$surv==1,];

mixed.grow = gam(logsize1~ s(logsize) + s(year,bs="re"),

data=gdata);
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Fitting a stochastic MPM

Binning needs BIG samples: good representation for (# size classes × #
years) matrix entries.

Statistical modeling has to include many correlations: good year for
growth is probably good for everyone, and “bad” for shrinkage

Astragalus tyghensis (Kaye & Pyke 2003, site 25), 9 annual matrices

For same-direction pairs of growth transitions, 80% of significant
correlations were positive.

For opposite-direction pairs, 100% of significant were negative.

4× 4 matrix (survival, growth, flowering) had 234 parameters for means,
variances, covariances. Fitted IPM had 11 parameters.
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1420 KAREN E. ROSE ET AL.

FIG. 4. The relationship between longest leaf length in year t and
longest leaf length in year t 1 1. Solid line, constant environment
model; dashed lines, yearly model.

TABLE 3. Estimated parameters for (A) the constant environment and
(B) random environment mortality models. The values in parentheses
are the standard errors of the intercepts. In each case L(t) is log size
and logit(P[death]) is ln{P(death)/[1 2 P(death)]}.

Parameter estimates

A. Constant environ-
ment model logit(P[death]) 5 20.34 (0.06)

B. Random environ-
ment model Standard error of size slope L(t) 5 0.14

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

logit(P[death]) 5 2.31 (0.65) 2 0.59L(t)
logit(P[death]) 5 0.83 (0.54) 2 0.59L(t)
logit(P[death]) 5 3.50 (0.65) 2 0.59L(t)
logit(P[death]) 5 1.28 (0.62) 2 0.59L(t)
logit(P[death]) 5 20.16 (0.88) 2 0.59L(t)
logit(P[death]) 5 20.75 (0.82) 2 0.59L(t)
logit(P[death]) 5 0.63 (0.52) 2 0.59L(t)
logit(P[death]) 5 0.87 (0.51) 2 0.59L(t)
logit(P[death]) 5 1.66 (0.48) 2 0.59L(t)
logit(P[death]) 5 2.39 (0.64) 2 0.59L(t)
logit(P[death]) 5 0.92 (0.46) 2 0.59L(t)

1990
1991
1992
1993
1994

logit(P[death]) 5 0.19 (0.51) 2 0.59L(t)
logit(P[death]) 5 1.04 (0.48) 2 0.59L(t)
logit(P[death]) 5 1.84 (0.47) 2 0.59L(t)
logit(P[death]) 5 3.10 (0.53) 2 0.59L(t)
logit(P[death]) 5 2.28 (0.84) 2 0.59L(t)

TABLE 2. Parameter estimates for (A) the constant environment and
(B) the random environment growth models. The values in parentheses
are the standard errors of the intercepts. The error variance, s , was2

g

0.11 for constant environmental model and 0.095 for the yearly model.
L(t) is longest leaf length in year t; L(t 1 1) is longest leaf length in
year (t 1 1).

Parameter estimates

A. Constant environ-
ment model

Standard error of
size slope L(t) 5 0.03

L(t 1 1) 5 1.21 (0.09) 1 0.71L(t)

B. Random environ-
ment model

Standard error of
size slope (L(t) 5 0.03

1979
1980
1981
1982
1983
1984
1985
1986

L(t 1 1) 5 1.43 (0.16) 1 0.74L(t)
L(t 1 1) 5 1.43 (0.09) 1 0.74L(t)
L(t 1 1) 5 0.85 (0.15) 1 0.74L(t)
L(t 1 1) 5 1.25 (0.11) 1 0.74L(t)
L(t 1 1) 5 1.15 (0.12) 1 0.74L(t)
L(t 1 1) 5 1.22 (0.10) 1 0.74L(t)
L(t 1 1) 5 1.07 (0.09) 1 0.74L(t)
L(t 1 1) 5 0.81 (0.09) 1 0.74L(t)

1987
1988
1989
1990
1991
1992
1993
1994

L(t 1 1) 5 0.98 (0.11) 1 0.74L(t)
L(t 1 1) 5 1.02 (0.13) 1 0.74L(t)
L(t 1 1) 5 0.89 (0.08) 1 0.74L(t)
L(t 1 1) 5 1.27 (0.08) 1 0.74L(t)
L(t 1 1) 5 1.08 (0.09) 1 0.74L(t)
L(t 1 1) 5 1.30 (0.09) 1 0.74L(t)
L(t 1 1) 5 1.40 (0.19) 1 0.74L(t)
L(t 1 1) 5 1.03 (0.10) 1 0.74L(t)

FIG. 5. The probability of dying as a function of longest leaf
length. The curves for each year and their average (bold) are shown;
the horizontal line gives the probability of dying in the constant
environment model, the vertical dotted line is the average size at
flowering.

In the constant environment mortality model, there was no
effect on the probability of death of plant size ( 5 0.98,2x1
P . 0.30) or age ( 5 2.31, P . 0.10). The parameter2x1
estimates are summarized in Table 3. In the random envi-
ronment mortality model, size became significant ( 5 18.6,2x1
P , 0.001) and there was considerable significant yearly
variation in mortality ( 5 211.27, P , 0.001), such that2x15

the probability of death at a certain size varied greatly be-
tween years. For example, for a plant with a diameter of 32.8
mm (the population mean size), the probability of death
ranged from 0.06 (1984) to 0.81 (1981). There were no sig-
nificant interaction terms. As with the constant environment
model, there was no evidence for significant age-dependent
mortality ( 5 2.31, P 5 0.13). The fitted relationships for2x1
the model are illustrated in Figure 5, and the parameter es-
timates are in Table 3.

Four parameters in IPM:
slope, intercept mean and
variance, error variance.

KE Rose, M Rees, PJ Grubb (2002) Evolution in the real world: stochastic variation and
the determinants of fitness in Carlina vulgaris. Evolution 56:1416–1430.

February 4, 2022 32 / 41



This is NOT the model.

n(z′, t + 1) =

∫ U

L

K(z′, z)n(z, t) dz
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THIS is the model.

Summary of Platte thistle demography. z, z′ are current and subsequent
sizes; D is damage by herbivores.

Demographic process Equation

Growth z′ ∼ Gaussian(µ = 0.83 + 0.69z, σ2 = 0.19)
Adult Survival logit ps = −0.62 + 0.85z
Flowering probability logit pf = −10.22 + 4.25z
Mean number of seeds log fn = 0.37 + 2.02z − 1.96D
Establishment probability pe = 0.067
Seedling size z ∼ Gaussian(µ=0.75, σ2 = 0.17)

K.E. Rose, S. M. Louda, and M. Rees. 2005. Demographic and evolutionary impacts of
native and invasive insect herbivores: A case study with Platte thistle, Cirsium
canescens. Ecology 86: 453–465.
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Better yet: THIS is the model you show to managers

the integral projection model (IPM) in which individu-
als are characterized by a continuous variable x such as
size. The state of the population given by n(x,t), such
that the number of individuals with sizes between a and
b is

R b
a n(x, t)dx. Instead of the matrix M, the IPM has a

projection kernel K(y,x), so that

n(y, tþ1)¼
ZS

s

K(y, x)n(x, t)dx,

where s and S are the minimum and maximum possible
sizes. The integration is the continuous version of
equation 4, adding up all the contributions to size y at
time tþ 1 by individuals of size x at time t. Providing
some technical conditions are met (see Ellner and Rees,
2006, for details), the IPM behaves essentially like a

matrix model, and so the results described above carry
over.

Constructing the projection kernel K(y,x) is
straightforward using the regressions shown in figure
3. For an individual of size x to become size y, it must
(1) grow from x to y, (2) survive, and (3) not flower
(flowering is fatal in monocarpic plants like Platte
thistle). These probabilities are calculated from the
fitted relationships in figures 3A, 3B, and 3C, respec-
tively. The use of regression models to construct the
projection kernel brings some advantages: (1) accepted
statistical approaches can be used for selecting an ap-
propriate regression model; and (2) additional vari-
ables characterizing individuals’ states can be included
by adding explanatory variables rather than having to
select a single best state variable. For example, in some
thistles the probability of flowering depends on both an
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Figure 3. Size-structured demographic rates for Platte thistle,
Cirsium canescens. (A) Growth (as characterized by plant size in
successive years), (B) survival , (C) the probability of flowering, and
(D) seed production all vary continuously with size and can be de-
scribed by simple regression models. (Redrawn from Rose et al.,

2005) In panels B and C, the data were divided into 20 equal-sized
categories, and the plotted points are fractions within each cate-
gory, but the logistic regression models (plotted as curves) were
fitted to the binary values (e.g., flowering or not flowering) for each
individual.
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We can visualize the model
and interrogate it like any
other statistical model:
residual plots, test against
simpler/more complex
alternatives, etc.

n(z′, t+ 1) =
∫ U
L K(z′, z)n(z, t)dz is one way to implement the model

numerically.
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Another way: as an ABM/IBM

An IPM is stochastic at the level of the individual: survival
probability; probability distribution for size at time t+ 1.

But it is deterministic at the level of the population (or
deterministic conditional on covariates): no demographic
stochasticity, the randomness due to unpredictability in the fate
of any one individual.

The regression equations that define an IPM also define an
“equivalent” ABM that includes demographic stochasticity.

The ABM is more realistic; the IPM runs a lot faster.
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This is where Mark and Dylan came on board....

While we were thinking about Monkshood conservation. . .
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Mark was simulating life history evolution, using ABMs
defined by fitted regression equations

How Big a Big Bang? 633

Figure 4: Fitted mortality curves for first-year plants at (A) La Crau and (B) Viols. The solid line is the average model, the dotted lines the yearly
model. Parameter values are given in table 1; in addition, we have assumed the individual-specific intercept term, ui, is equal to 0.

site as explanatory variables, the chance of a plant dying
decreases with age because larger plants are generally older.
Only after size effects have been removed was there an
increase in the chance of death with age.

In the yearly mortality model, the most important pre-
dictor of mortality was plant size ( , );2x = 387.3 P ! 0.00011

the next most important term was the site by year inter-
action ( , ). The effect of age was also2x = 60.0 P ! 0.00013

highly significant ( , ). None of the2x = 15.2 P ! 0.00011

other interaction terms was statistically significant. The
fitted relationships for the yearly model are given in figure
4. The individual-specific heterogeneity, jd, was highly sig-
nificant ( , , ; for other parameterj = 1.3 z = 3.02 P ! 0.002d

values, see table 1).
To see how the individual-specific heterogeneity trans-

lates into the probability of a plant dying, we computed
the probability of death for plants 1, 2, and 3 SDs from
the average intercept. It is clear from figure 5 that the
estimated levels of individual-specific heterogeneity trans-
late into substantial differences in the risk of death. The
average probability of death, for a given age and size, was
also calculated with

exp(m 1 u 1 m L 1 m a)0 i s aP(death) = E 1 1 exp(m 1 u 1 m L 1 m a)0 i s a

# f(u )du , (1)i i

where m0, ms, and ma are parameters characterizing size-
and age-independent mortality, size-dependent mortality,
and age-dependent mortality, respectively, where ui is an
individual-specific term and where f(ui) is the probability
density function of ui. This differs from the probability of
death of a plant with the average intercept because the

probability of death is a nonlinear function of ui (Stefanski
and Carroll 1985; Neuhaus et al. 1991).

Flowering. The same methods for analyzing the probability
of mortality were used in the analysis of flowering prob-
ability. Plant size, log transformed, was by far the most
important predictor of flowering ( , ),2x = 201.9 P ! 0.00011

but there were also significant age ( , )2x = 8.1 P ! 0.0051

and year ( , ) effects. There were no sig-2x = 8.4 P ! 0.043

nificant site effects ( , ) or interaction terms.2x = 0.1 P 1 0.11

The main effect of year was only marginally significant
and accounted for 2% of the deviance and so was not used
in any of the subsequent models. The individual-specific
heterogeneity, jf , was not significant ( , ,j = 0.52 z = 0.39f

) and so was dropped from the model. The fittedP 1 0.1
relationship is given in figure 6.

The relationship between maximum rosette area and
fecundity, measured by the area of receptacle matured, is
shown in figure 7. In agreement with numerous other
studies, there is a linear relationship between fecundity
and size on double log axes (Reinartz 1984; de Jong and
Klinkhamer 1986; Klinkhamer and de Jong 1987; Rees and
Crawley 1989). There were no significant site effects, nei-
ther main effect nor interaction terms ( in all cases).P 1 0.1

Growth. Plant growth was analyzed using linear mixed
models in S-Plus (Becker et al. 1988; Venables and Ripley
1997). This approach assumes the vector of observations
on each plant is drawn from a multivariate normal dis-
tribution. The models allow the incorporation of random
individual-specific effects and autocorrelated error terms.
In addition, the variance of the response variable may be
some simple function of the fitted values. In models with
more than one random effect, the estimated individual-
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Figure 13: Evolutionary trajectories for (A) the intercept, b0; (B) the slope of the size relationship, bs; and (C) the slope of the age relationship,
ba. In each case, the horizontal line is the estimated parameter value. Other parameter values are for the La Crau site.

effect on the predicted average size and age at flowering.
In contrast, temporal variation in growth selects for re-
duced size and age at flowering. The predicted sizes at
flowering in these models are slightly larger than those
observed in the field.

The assumption of constant yearly recruitment had little
effect on the expected average sizes at flowering. In models
with yearly variation in growth and mortality, but constant
recruitment, the predicted sizes at flowering were 1,968
and 2,343 cm2 at the La Crau and Viols sites, respectively.
Both values were extremely close to those obtained with
yearly variation in recruitment.

Why is temporal variation in growth so important? The
answer to this question is shown in figure 15, which il-
lustrates the expected growth curves of plants of different
ages in the yearly growth model and the average growth
model. The expected growth curves are calculated by con-
ditioning on plant size in the previous year:

E[L(t 1 1)FL(t)] = E[a 1 b L(t) 1 b ag g a

21 b L(t) 1 b L(t)a 1 «]g2 ga

¯= a 1 b L(t) 1 b a (14)g g a

21 b L(t) 1 b L(t)a,g2 ga

where ag, bg, ba, , and are estimated regression pa-b bg2 ga

rameters, and the terms with overbars are averaged quan-
tities. In calculating this expectation, we have used the
facts that and , providing XE[«] = 0 E[XY ] = E[X]E[Y ]
and Y are independent. From the figure, it is clear that
the expected sizes of plants the following year becomes
smaller as plants grow older. Therefore, the expected payoff
from delaying reproduction decreases as plants get older,
and this selects for smaller sizes at flowering. In contrast,
the average model predicts larger asymptotic sizes than the
yearly model, and the expected reduction in plant size for

Mark Rees, Andy Sheppard, David Briese, and Marc Mangel
(1999). Evolution of Size-Dependent Flowering in
Onopordum illyricum: A Quantitative Assessment of the Role
of Stochastic Selection Pressures. American Naturalist 154:
628–651.
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Finding ESS’s using IPMs defined by the same regression
equations (ESS (β0, β1) in logit pf(z) = β0 + β1z.)
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Figure 3. Observed distribution of flowering sizes (solid bars)
and predictions from the various models. The bold line is the
fitted model, the dotted line is from the unconstrained ESS
model and the solid thin line is from the constrained ESS.
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Figure 4. The fitness landscape for Carlina, calculated
assuming that the resident population uses the estimated
flowering strategy in a fully stochastic environment. The
filled point is the estimated flowering strategy, and the bold
ellipse is the 95% confidence contour, calculated using the
standard quadratic approximation to the likelihood—
assuming that the likelihood is 
2-distributed with three
degrees of freedom. The open point is the ESS prediction
assuming �s is fixed.

simple field data, we were able to make very accurate pre-
dictions of the distribution of flowering sizes in Carlina.
Invasibility analysis reveals that the observed flowering
strategy is close to the ESS and that temporal variation in
recruitment, growth and survival are all important influ-
ences on the evolutionarily stable flowering size (figure 5).
These results reinforce the conclusions of Rees et al.
(1999) and Rose et al. (2002) on the need to include tem-
poral variation in life-history studies.

The parameterized model provides an accurate descrip-
tion of the number of individuals and the distribution of

Proc. R. Soc. Lond. B (2004)
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Figure 5. Fitness landscapes as a function of �0, the
intercept of the flowering function: (a) stochastic environ-
ment with five different residents, (b) different variable
environments with the environment-specific ESS as the
resident strategy (thick line, fully stochastic environment;
thin line, constant environment; dotted line, variable growth
only; dashed line, variable survival only; dotted–dashed line,
variable recruitment only).

sizes within each age class, the distribution of flowering
sizes, average age at reproduction and average population
size. Clearly, an adequate model must at least describe the
data well if it is to be used to draw further conclusions.
However, a parameterized model of Carlina ignoring
stochastic variation failed to predict the mean and variance
of the ESS flowering distribution, while still providing an
accurate description of the population structure (Childs et
al. 2003). By contrast, the stochastic model presented
here predicts an evolutionarily stable flowering size
(51.2 mm) that is very close to the estimated mean size
at flowering (52.0 mm), provided that the variance in the
threshold size distribution is constrained. Interestingly, in
the constant-environment case (Childs et al. 2003), the
parameters of the constrained ESS are not significantly
different from the estimated parameters of the flowering
function, yet the fitness difference between the estimated
and evolutionarily stable flowering functions was ca. 10%.
Conversely, in the stochastic model the ESS parameters
are significantly different from the estimated parameters,
though the fitness difference is only ca. 2%. Taken
together, these observations indicate that an adequate
description of the life history of Carlina needs to include
temporal variation (Rose et al. 2002), and highlights the

D. Z. Childs, M. Rees, K.E. Rose, P.J. Grubb, and S.P. Ellner (2004). Evolution
of size-dependent flowering in a variable environment: construction and analysis
of a stochastic integral projection model. Proceedings of the Royal Society of
London Series B 271: 425-434.
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Sometimes it works
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What do you gain by doing calculations with an

IPM, instead of doing simulations of an ABM?

And what do you lose?

When is an IPM really NOT the best choice?
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