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We analyze the long-term evolution of a continuous trait subject to frequency-dependent disruptive selection, and 
controlled by a single diploid, additive locus. Our simple selection model is a mathematical approximation to 
many complex systems of ecological interactions resulting in disruptive selection, like, for example, scramble 
competition and habitat heterogeneity. A polymorphism of two specific alleles at equal frequencies is the unique 
long-term equilibrium, or ESS, of this system. We then study the evolution of direct assortative mating for the se-
lected trait, through mutations of small effect at modifier loci controlling the degree of assortment. The mating 
process is described by a model that allows for possible costs of assortment. Unless the cost of assortment is too 
high, strength of assortment always increases in populations where mating is random or weakly assortative, and 
also in populations that already practice very strong assortative mating. However, even if it has no cost, assort-
ment can increase continuously from random mating to complete isolation, resulting in sympatric speciation, only 
if selection is sufficiently strong. In fact, only a modest degree of assortment, corresponding to a continuously 
stable ESS, can be attained from random mating, when selection intensity is below a certain threshold. 
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1. Introduction 
 

It is well known that under certain conditions fre-
quency-dependent selection can maintain genetic 
variation (e.g. Cockerham et al., 1972; Clarke, 
1979; Udovic, 1980; Wilson and Turelli, 1986; 
Asmussen and Basnayake, 1990). The question of 
how general and common these conditions are in 
natural populations remains largely unsettled. Re-
cently, a new theoretical framework – the adaptive 

dynamics – has been developed that suggests that 
under certain types of ecological interactions (e.g. 
competition, multiple niches) biological systems 
naturally evolve, through a sequence of fixations of 
mutations, towards the areas of parameter space 
where genetic variation is maintained (e.g. Chris-
tiansen and Loeschcke, 1980; Christiansen, 1991; 
Metz et al., 1996; Eshel et al., 1997; Geritz et al., 
1998; Kisdi and Geritz, 1999). An interesting 
consequence of the adaptive dynamics is a possi-
bility for the maintenance of genetic variation un-
der apparently disruptive selection. In such a situa-
tion, intermediate genotypes (e.g. heterozygotes) 
are selected against by frequency-dependent selec-
tion but are recreated each generation as a result of 
random mating, segregation and recombination. 
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Given reduced fitness of intermediate genotypes, 
one may expect that any tendency to assortative 
mating for the selected trait will be favoured by 
natural selection whenever its possibility arises in 
the population, because this will decrease the pro-
duction of maladaptive genotypes. This idea forms 
the basis of both the reinforcement scenario (e.g. 
Dobzhansky, 1940; Butlin, 1987; Howard, 1993) 
and of many scenarios of sympatric speciation (e.g. 
Maynard Smith, 1966; Udovic, 1980; Felsenstein, 
1981; Kondrashov, 1986; Doebeli, 1996; Dieck-
mann and Doebeli, 1999; Kondrashov and Kon-
drashov, 1999; Geritz and Kisdi, 2000). 

Most of the theoretical works on reinforcement 
and sympatric speciation have considered not the 
whole process of the evolution towards complete 
reproductive isolation but rather single (mostly 
initial) steps resulting in some assortative mating. 
The idea was that if some level of assortative mat-
ing can get established in a population which ini-
tially is random mating, then further changes that 
make assortative mating stronger and stronger 
would proceed easily, leading eventually to com-
plete reproductive isolation. A limited amount of 
simulations focusing on the whole process of 
speciation seem to confirm this expectation (e.g. 
Dieckmann and Doebeli, 1999; Kondrashov and 
Kondrashov, 1999). However, the complexity of 
the models used in these simulations and a large 
number of parameter combinations to be explored 
make any generalizations very difficult. For this 
reason, it would be beneficial to complement nu-
merical studies of complex models with analytical 
(and numerical) studies of much simpler models 
with transparent interpretation. 

Here, we will consider a type of model that ac-
cording to Felsenstein (1981) should provide the 
most favorable conditions for the evolution of 
reproductive isolation. We will assume that there is 
a diploid additive locus controlling a continuous 
trait which simultaneously is under frequency-de- 
pendent disruptive selection and is also used in 
assortative mating. By the latter assumption our 
model is of the type called “one-allele” by Felsen-
stein (1981) in opposition to the “two-allele” type 
– considered less favorable to evolution of repro-
ductive isolation – where selection and assortment 
act on distinct characters. Assortment for the char-
acter subject to selection may be achieved indi-
rectly, through the development of linkage disequi-

librium with the character subject to assortment. 
We assume that the mechanics of assortment is 
according to the model of Gavrilets and Boake 
(1998), which allows for a possible cost of assort-
ment due to delays in mating caused by mate 
choice. First, we will show that for the selected 
trait there is a polymorphic long-term equilibrium 
or ESS, namely a stable equilibrium of two spe-
cific alleles that cannot be invaded by any other 
mutant allele. We then will assume that a second 
genetically controlled continuous trait determines 
the intensity of assortment, so that its range of 
variation spans the whole spectrum of mating 
behavior, from random mating to complete isola-
tion among the two homozygotes of the primary 
trait occurring at the polymorphic ESS. By consi-
dering the dynamics of single locus mutations of 
small effect for this mating trait, we will show that, 
provided the cost of assortment is not too high, a 
small degree of assortment can always be intro-
duced in a random mating population while, con-
versely, a weakening of assortment is always pre-
vented whenever complete isolation prevails in the 
population. But, in spite of these results, we also 
will demonstrate, quite surprisingly, that unless 
selection on the primary trait is strong enough, 
evolution of assortment starting from random 
mating cannot progress by small changes all the 
way to complete isolation because it will stop at 
some intermediate stage that has the characteristics 
of a (weak) ESS level of assortment. Apparently in 
contrast with recent simulation results based on a 
model very similar to ours (e.g. Dieckmann and 
Doebeli, 1999), but in agreement with old and 
recent results based on models of the “two-allele” 
type (e.g. Felsenstein, 1981; Dieckmann and Doe-
beli, 1999; Kondrashov and Kondrashov, 1999;), 
we thus conclude that disruptive selection per se is 
not sufficient for sympatric speciation to occur 
because it is also required that the level of selec-
tion against intermediate types be strong enough. 

 
 

2. Frequency-dependent disruptive selection  
in a random mating population 

 
2.1. Types of evolutionary singularities 

 
In the long-term evolution of continuous traits 
there are points of the phenotypic space that have 
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the nature of "evolutionary singularities" (Geritz et 
al., 1998) in the sense that a qualitative change of 
the evolutionary dynamics of monomorphic popu-
lations takes place in their vicinity. The two most 
important kinds of such singularities were dis-
cussed and contrasted for the first time by Chris-
tiansen (1991) who named them MEAST and 
PEAST, respectively (acronyms for monomorphic 
or polymorphic evolutionarily attainable stable 
traits). Both these singularities have the property – 
called continuous stability (Eshel and Motro, 1981; 
Eshel, 1983), or m-stability (Taylor, 1989), or con-
vergence stability (Christiansen, 1991) – that muta-
tions of small effect can invade a monomorphic 
population with a trait value near the singular point 
if and only if they change the trait in its direction. 
Thus, both MEAST and PEAST are evolutionary 
attractors in the sense that in long-term evolution a 
trait tends to move toward one of such points, as 
long as the population remains monomorphic. The 
difference between the two kinds of singularities is 
that a monomorphic population at a MEAST can-
not be invaded by any mutation, while, on the op-
posite, any mutation can invade a PEAST. A 
MEAST is the same as a continuously stable ESS 
as defined by Eshel and Motro (1981) and Eshel 
(1983). Thus it identifies a monomorphic long-
term equilibrium which, at least for traits with the 
simple clonal (asexual) genetics, is locally stable in 
the long-term dynamics (Eshel et al., 1997). This 
means that a population not too far away from a 
MEAST will indeed converge – through a se-
quence of invading mutations – to the monomor-
phic state identified by the singularity. 

The long-term implications of a PEAST are not 
as firmly established. What is certain that once a 
population is sufficiently close to a singularity of 
this kind a protected polymorphism necessarily 
arises which is maintained by disruptive selection, 
the opposite of what would occur near a MEAST 
where, if a polymorphism arises it would be main-
tained by stabilizing selection (through heterozy-
gote advantage). As a consequence of this selection 
regime, further evolution through invading muta-
tions tends to be in the direction of increasing the 
phenotypic variance of the population (Christian-
sen and Loeschcke, 1980; Christiansen, 1991; 
Eshel et al., 1997; Geritz et al., 1998; Kisdi and 
Geritz, 1999). According to the theory of adaptive 
dynamics PEASTs might be a major cause of 

branching of the phylogenetic tree. This view is 
based mostly on results from models with asexual 
reproduction (Geritz et al., 1998, 1999; Kisdi, 
1999; Doebeli and Dieckmann, 2000), but also in 
the more important case of sexual reproduction and 
mendelian genetics it is supported by results on 
secondary evolution of assortative mating and 
sympatric speciation (Dieckmann and Doebeli, 
1999; Geritz and Kisdi, 2000). Here we will ana-
lyze the role of PEAST in sexual diploid species 
with respect to both maintenance of polymorphism 
and speciation. 

Singular points of the PEAST kind have been 
discovered in a great variety of adaptation prob-
lems, including intraspecific exploitative competi-
tion (Christiansen and Loeschcke, 1980), sex-ratio 
(Uyenoyama and Bengtsson, 1982), resource-
exploitation intensity, susceptibility to predation 
and intraspecific contests (Abrams et al., 1993), 
multiple niches (Geritz et al., 1998), asymmetric 
competition (Kisdi, 1999), seed size (Geritz et al., 
1999), mutualism and prey-predator interactions 
(Doebeli and Dieckmann, 2000). Accordingly, the 
details of the fitness representations specifically 
appropriate to each of these situations are quite 
diverse and might be very complicated. We in-
stead, rather than focussing on a particular exam-
ple, prefer to adopt a fitness representation that, on 
the one hand, is mathematically simple and, on the 
other hand, can be taken as a good approximation 
for any adaptation problem involving a PEAST if 
the current values of the evolving character are 
close enough to the singularity. 

 
 
2.2. A simple model of frequency-dependent  

disruptive selection 
 

The context in which evolutionary singularities 
appear is that of the initial evolution of a mutation 
introduced at a small frequency in a monomorphic 
resident population in equilibrium. In this context, 
assuming discrete generations, let v(y,x) denote the 
intrinsic (asymptotic) rate of increase of the sub-
population of mutants when the trait value of resi-
dents is x and that of mutants is y, and let v(x,x)=1. 
Hence, the mutation invades if v(y,x)>v(x,x)=1, 
while it cannot invade if v(y,x)<1. If v(y,x) is such 
as to admit a PEAST singularity in the interior of 
the phenotypic domain, without loss of generality 
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we may assume it to be located at x=x°=0. It then 
follows from the definition of PEAST that, avoid-
ing non-generic cases, v(y,x) must have the follow-
ing properties (Eshel, 1983; Taylor, 1989; Chris-
tiansen, 1991; Geritz et al., 1998) 

 vy(0,0)=0 , (1.1) 

 vyy(0,0)>0 , (1.2) 

 vyy(0,0)+vyx(0,0)<0 , (1.3) 

where  
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Conditions (1.1) and (1.2) ensure that v(y,x) has a 
local minimum with respect to y at y=x=x°=0, so 
that x° can be invaded by any mutant of small ef-
fect. Condition (1.3) ensures the continuous stabil-
ity of x°=0, so that this singularity is an evolution-
ary attractor for monomorphic populations. The 
simplest function with these properties is the quad-
ratic in y and x 

v(y,x)=1+αy2−(α+β)xy+βx2 , with 0<α<β . (2) 

The limitations on the parameters α and β are im-
posed by (1.2) and (1.3). In fact, (1.2) is violated if 
α≤0, while (1.3) is violated if α≥β. As long as x 
and y are not too far from x°=0, this choice for 
v(y,x) is a good approximation to the rate of in-
crease of a mutant in a monomorphic population 
for any adaptation problem that admits a PEAST 
(Metz et al., 1996). 

To produce a simple frequency-dependent se-
lection model in which invasion dynamics is gov-
erned by (2), we stipulate that fitness (viability) of 
individuals in a population of arbitrary phenotypic 
composition is determined by the outcome of ran-
dom pairwise interactions in which the payoff to an 
individual of phenotype y who has an opponent of 
phenotype x is given by v(y,x). Hence, in any very 
large population where the trait has mean x  and 
variance s2, the average fitness of generic in- 
dividuals of phenotype y is given by 

 w(y, x ,s2)=E{v(y,x)|y}= 

 =1+αy2−(α+β) x y+β( x 2+s2) . (3) 

Obviously, this fitness is a linear function of the 
phenotypic frequencies, with positive coefficients, 
v(y,x), that depend on the particular set of trait 
values, x, currently available in the population. 
Hence, as ever new genetic variants invade and 
spread in the population, the intensity and charac-
teristics of selection changes in the course of long-
term evolution. The mean fitness of the popula- 
tion is 

 w =E{w(y, x ,s2)}=1+(α+β)s2 . (4) 

Hence, the trait values that are favored by selection 
in the current population are those that satisfy 

w(y, x ,s2)> w  , or αy2−(α+β) x y+β x 2>αs2 . (5) 

The disruptive character of selection becomes con-
spicuous when x ≈x°=0. In fact for x =0 condition 
(5) indicates that, since α>0, a trait y is favored if 
and only if y2>s2. 

It is interesting that, in spite of its rather abstract 
derivation, the fitness regime represented by (3) is 
fully equivalent to that of the model of intraspeci-
fic exploitative competition of Christiansen and 
Loeschcke (1980), later adopted also by Dieck-
mann and Doebeli (1999). Formally this model – 
based on Lotka–Volterra competition equations 
parameterized in terms of Gaussian resource spec-
trum and utilization functions – appears quite 
complex. But then it is reduced to (3) by the ap-
proximations permitted by the assumptions that all 
individual niche locations are close to the mean of 
the resource spectrum, equal to zero, and that the 
total population size is always at the equilibrium 
corresponding to the current population composi-
tion. With this interpretation the parameters α and 
β satisfy the limitations of (2) if the resource spec-
trum is wider than the individual niches, and both 
decrease as the width of individual niches in-
creases. 

 
 

2.3. Genetic assumptions 
 

We complete the formulation of our model with 
the two additional assumptions that variation of the 
selected trait is determined by a single additive, 
diploid locus, and that genetic or developmental 
constraints limit such variation to the finite range  
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[–xL,xL]. Without loss of generality we may let 
xL=1, so that the phenotypic domain in our model 
is given in fact by the interval [–1,1]. The assump-
tion of one additive locus is also made by Chris-
tiansen and Loeschcke (1980), Kisdi and Geritz 
(1999), and Geritz and Kisdi (2000), and genetic 
additivity is central to the analysis of sympatric 
speciation of Dieckmann and Doebeli (1999). 

If mating is at random with respect to the se-
lected trait, the trait value of a random individual 
from the newborn population is x=e+e', where e 
and e' are independent, identically distributed ran-
dom variables representing, respectively, the ef-
fects of the maternal and the paternal allele in the 
genotype of the given individual. Hence, if the 
allelic effects in the population have mean e  and 

variance 2
as , we easily derive from (3) and (4) that 

in this population the mean fitness of an allele with 
effect d is 

( ) +−+= dedsedw aa β2α1,, 22  

 ( ) ( ) ,22 22
ase α+β+α−β+  (6.1) 

and the overall mean fitness is 

 ( ) 221 asw β+α+= . (6.2) 

 
 

2.4. The polymorphic ESS 
 

As demonstrated by Christiansen and Loeschcke 
(1980), in a population conforming to the above 
model no equilibrium may involve more than two 
distinct alleles. Additivity, together with the limita-
tion of the phenotypic domain to [–1,1], implies 
that the allelic domain – the set of possible allele 

effects – is limited to the interval 



−

2

1
,

2

1
. By a 

standard analysis it can be shown that the two ex-

treme alleles of this set, of effects 
2
1−=−e  and 

,
2
1=+e  may coexist in a locally stable equilibrium 

where each has a frequency of 
2
1

, and that this is 

the only equilibrium with these two alleles. This 
polymorphism is protected because the two alleles 

can invade each other, as it is easy to prove from 
the general condition for a mutant d to invade a 
population where the effects of the resident alleles 

have mean e and variance 2
as , namely 

( ) ( ) .β2β2α,, 2222
aaa sededwsedw αα >−+−⇔>  (7) 

In a population where the two alleles {e–,e+} are 

in equilibrium obviously e =0 and 
4
12 =as , which 

is the largest possible variance for a distribution 

over the interval 



−

2
1

,
2
1

. It follows that no mu-

tant allele can invade such a population. In fact, 

condition (7) reduces in the present case to d2 >
4
1

, 

which can never be satisfied since any mutant dif-
ferent from the resident alleles is limited by 

2
1

2
1 <<− d . We conclude that the population state 

E0, consisting of the two extreme alleles, {e–,e+}, 
in equal frequency, is a polymorphic long-term 
equilibrium. Moreover E0 is the only long-term 
equilibrium possible in the present system, because 
for every other population state a mutant can be 
found that can invade it. In fact, consider the mu-
tant e– if in the resident population e ≥0, or the 
mutant e+ if e <0. In either case invasion condition 
(7) reduces to  

 ( ) 222
4
1

asee α>α−β+β+α , 

which is always true because 
4
12 <as  for any popu- 

lation state different from E0. As a conclusion of 
this analysis we may therefore state the following 
 

RESULT 1. In a system of frequency-dependent 
disruptive selection defined by the fitness function 
of Eq. (3), operating on a continuous trait con-
trolled by a single additive, diploid locus with alle-

lic effects limited to the finite range 



−

2
1

,
2
1

, 

there is, under random mating, a unique long-term 
equilibrium or ESS, identified by the polymorphic 
population state, E0, where each of the two alleles 
with extreme effects is present with a frequency  

of 
2
1

. 
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3. Assortative mating for a trait  
under disruptive selection 

 
Once a random mating population has settled in the 
polymorphic long-term equilibrium E0, its pheno-

typic variance is only s2=
2
1

. Hence its mean fit-

ness, equal to 1+
2

β+α
, by Eq. (4), is far from the 

maximum value it could have, namely 1+α+β. 
This is because half of its members, being het-
erozygotes, have a trait value, x=0, that gives them 

the smallest fitness, w(0,0,
2
1

)=1+
2
β

 (see Eq. 3), 

while the homozygotes, with phenotype x= –1 or 

x=1, have the largest fitness, namely 1+α+
2
β

. 

Since assortative mating for the trait would tend to 
decrease the frequency of heterozygotes, individu-
als adopting such mating habit should have, on 
average, offspring with a larger phenotypic vari-
ance and therefore a greater fitness than the resi-
dent population. Thus, it is reasonable to expect 
that assortative mating should evolve in this popu-
lation. 
 

3.1. The model of assortative mating 
 

Most studies of the evolution of reproductive isola-
tion under disruptive selection concentrate on the 
establishment of a correlation, by way of linkage 
disequilibrium, between the selected trait and an-
other trait which, for some reason, happens to be 
already a target of assortative mating in the popula-
tion (Maynard Smith, 1966; Felsenstein, 1980; 
Kondrashov and Kondrashov, 1999; Geritz and 
Kisdi, 2000). This is certainly reasonable. But, if 
the selected trait is a morphological feature that 
can be perceived and appreciated by conspecifics 
of the opposite sex it is not less plausible, from a 
biological point of view, that this trait itself might 
become the focus of mating preferences. We there-
fore suppose (as in Dieckmann and Doebeli, 1999) 
that there exist genes – to which we will refer as 
mating genes – different from the one controlling 
the primary trait, which with the appropriate alleles 
could induce in females a degree of mating prefer-
ence of assortative type with respect to the selected 
trait. 

We assume that the mating process resulting in 
assortment agrees with the model introduced by 
Gavrilets and Boake (1998). Preferences are ex-
pressed by females, who mate only once, while 
males may participate in multiple matings. Un-
mated adult females encounter males at random. 
An encounter of a female of trait value x with a 
male of trait value y results in their mating with 
probability π(|x–y|), where the mating preference 
function π is decreasing and π(0)=1, since here we 
are concerned only with positive assortment. A 
female who refuses a male will try again at the 
next encounter, unless she had made already a total 
of n=1,2,… unsuccessful encounters, in which case 
she must remain unmated, an assumption that re-
flects the idea that the time interval available to 
females for mating is limited. Thus, if p(y) repre-
sents the frequency of trait y in the population, the 
probability that for a female x an encounter results 
in mating is 

 ( ) ( ) ( )∑ −π=π
y

ypyxx , (8.1) 

and the probability that she eventually mates with a 
male y is given by θ(x,y)p(y), where 

 ( ) ( )[ ] ( )∑
−

=

−ππ−=θ
1

0

.1,
n

i

i yxxyx  (8.2) 

We refer to this function as mating rate. In case of 
n=1 the model can also be conceived as a model of 
fertility selection (Bodmer, 1965; Hadeler and 
Liberman, 1975), or as a model of parental selec-
tion (Gavrilets, 1998). Thus, in this case the model 
can be interpreted as describing both postmating 
and premating reproductive isolation, whereas the 
case of n>1 is for premating isolation only. Eco-
logical situations where the encounter rate between 
females and males is very high are approximated 
by the limit of n=∞. In this case there is no cost to 
females for being choosy, because every female is 
sure to find a mate irrespective of her phenotype. 
In fact 

 ( ) ( )
( )x

yx
yx

π
−π

=θ , , so that 

 ( ) ( ) 1, =θ∑ ypyx
y

  for all x. (9) 
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Hence, in this form, assortative mating does not 
introduce an additional factor of selection among 
females. But even in this case a component of sex-
ual selection for the primary trait is present among 

males, because in general ( ) ( )∑ ≠θ
x

xpyx,  

( ) ( )xpyx
x
∑ ′θ ,  for yy′. Published studies of sym- 

patric speciation through evolution of assortative 
mating have not considered the possibility of a cost 
to choosiness and use models of assortment where, 
as  in  our  case  of  n = ∞,  all  females  are  certain  
to mate (e.g.  Felsenstein, 1981; Doebeli, 1996; 
Dieckmann and Doebeli, 1999; Kondrashov and 
Kondrashov, 1999; Geritz and Kisdi, 2000). 
 
 

3.2. The invasion dynamics of mating modifiers 
 

Our general method of analysis of the evolution of 
assortative mating with disruptive selection is the 
following. We start from a resident population 
where the primary locus is polymorphic for the two 
extreme alleles (e–,e+) and all mating loci are 
monomorphic, and assume it to be at a locally sta-
ble equilibrium under disruptive selection, as 
specified by (3), and under some level of assorta-

tive mating characterized by a mating preference π, 
as specified in (8). We then let a mutation of a 
mating gene occur, introducing at a small fre-
quency a mutant allele m′ besides the resident al-
lele m. The rate of recombination between the mat-
ing locus affected by the mutation and the primary 
locus is r. The mutation has the effect that het-
erozygote females m|m′ have mating preference π′ 
instead of π – and mating rate θ′ instead of θ – but 
we assume that the difference between π′ and π is 
small. We then analyze the dynamics of this popu-
lation to determine whether the mutant allele m′ is 
able to invade the resident population by increas-
ing in frequency while rare. 

Table 1 shows the structure of this population. 
Since with assortative mating genotypes are not in 
Hardy–Weinberg proportions, we have to use 
genotypic frequencies rather than gametic frequen-
cies to represent the composition of the population. 
The total frequency of adult mutant heterozygotes, 
u1+u21+u22+u3=u, is small and the adult genotypic 
frequencies of residents are only slightly different 
from the equilibrium frequencies (p1,p2,p3), that 
they had before mutation occurred, so that the per-
turbations v1, v2 and v3 are small. Matings among 
heterozygote mutants are ignored because their 
frequency is o(u). Therefore, the homozygote mu-

TABLE 1 

Structure of the population after mutation of a mating gene 

    RESIDENTS 
 

genotype → 
 

me

me

−

−  
me

me

+

−  
me

me

+

+  

 ↓ primary 
trait 

→ –1 0 1 

  ↓ frequency p1+v1 p2+v2 p3+v3 

me

me

−

− ′
 –1 u1 ( ) 111111 upθ′+θ  ( ) 121221 upθ′+θ  ( ) 131331 upθ′+θ  

me

me

−

+ ′
 0 u21 ( ) 2112112 upθ′+θ  ( ) 2122222 upθ′+θ  ( ) 2132332 upθ′+θ  

me

me

+

− ′
 0 u22 ( ) 2212112 upθ′+θ  ( ) 2222222 upθ′+θ  ( ) 2232332 upθ′+θ  M

U
T

A
N

T
S 

me

me

+

+ ′
 1 u3 ( ) 313113 upθ′+θ  ( ) 323223 upθ′+θ  ( ) 333333 upθ′+θ  

 
Note: genotypic frequencies refer to the adults, after selection. θ11=θ(−1,−1), θ12=θ(−1,0), θ13=θ(−1, 1), … , θ′11=θ′(–1,–1), … . 
Each θij and θ′ij is computed, according to (8), with respect to a population of composition (p1,p2,p3). 
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tants, which are produced by these matings, are 
also ignored. It follows that v1+v2+v3 = –u+o(u) 
because the sum of all genotypic frequencies must 
be one. In the main body of the table we report the 
frequencies of matings among mutants and resi-
dents, neglecting o(u) terms. The mutation affects 
only the mating behaviour of females. Hence, in 
each of these matings, the appropriate mating rate 
is θ when the female is a resident, and θ′ when she 
is a mutant. 

The equilibrium genotypic frequencies among 
the adults of the resident population (p1,p2,p3), are 
determined as follows. Adult females mate and 
generate the newborn of next generation. If 
(q1,q2,q3) denote the genotypic frequencies among 
these – before the occurrence of viability selection 
– then 

 

( ) 2
222212112

2
1111 4

1

2

1
ppppMq θθθθ +++= , (10.1) 

( ) ( ) ++++= 3131132121122 2

1
ppppMq θθθθ  

( ) ,
2

1

2

1
323223

2
222 ppp θθθ +++  (10.2) 

( ) 2
222323223

2
3333 4

1

2

1
ppppMq θθθθ +++=  (10.3) 

∑=
ij

jiij ppM θ .  (10.4) 

M is the normalization factor needed to ensure that 
q1+q2+q3=1. It is equal to one only if all females 
are certain to mate, which occurs only when n=∞ 
(see Eqs 8, 9). The population of newborn with this 
composition now undergoes frequency-dependent 
viability selection according to (3). Hence the adult 
genotypic frequencies, which at equilibrium must 
be identical to those of the previous generation, are 
given by  

∑===
i

iiiii qWWiqWpW ,3,2,1,  (10.5) 

where Wi is the fitness of the i-th genotype and W  
then is the mean fitness. Hence 

( ) 3321 221 qqqW βα +++= , (10.6) 

( )312 1 qqW ++= β ,  (10.7) 

( ) 1123 221 qqqW βα +++= , (10.8) 

( ) ( )[ ]2313141 qqqqqW ++++= βα . (10.9) 

We know that with random mating (θij=1 for all i,j) 
the unique polymorphic solution of (10) is 

p1=p3=
4
1

, and with complete assortment (θij=0 for 

all ij) it is obvious that the solution is p1=p3=
2
1

. It 

is natural to expect that the same symmetry, p1=p3, 
carries over to polymorphic solutions of (10) at 
intermediate levels of assortment. Such expectation 
is grounded in the intrinsic symmetry of the viabil-
ity selection structure (cf. 10.6–8) and of the mat-
ing preference function π. We therefore limit our 
consideration to solutions of (10) having the prop-
erty that p1=p3. The actual existence – and stability 
– of these equilibria for intermediate assortment 
will be considered later. With this restriction it 
follows immediately that 

3131232131133212 ,,θθ,θθ,θθ WWqq ===== .  (10.10) 

As long as the mutant allele is rare (small u) the 
state of the population is adequately described by 
the vector (v1,v2,v3,u1,u21,u22,u3) and the – short-
term – evolutionary dynamics of the population is 
represented with sufficient accuracy by the recur-
rence equations for this vector, approximated by 
neglecting o(u) terms. It is easy to verify that in the 
resulting linear recurrence equations the dynamics 
of (u1,u21,u22,u3) is independent of (v1,v2,v3), and 
that the transition matrix for (u1,u21,u22,u3)

T, taking 
into account (10.10) is 
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where 

( ) ( ) 2122111111 θθ
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1θθ
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1
ppa ′++′+= , 
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( ) ( ) 2222212112 4

1
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1
ppb θθθθ ′++′+= , 

( ) ( ) 2122111313 4

1

2

1
ppc θθθθ ′++′+= , 

1

1
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q

q

W

W
h

βα
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+== .   (11.2) 

Notice that the quantity 1–h is a measure of the 
intensity of disruptive selection. 

Invasion by the mutant mating allele m′ is de-
cided by the dominant eigenvalue, λ(π,π′) say, of 
Q(π,π′). The elements of this matrix are non-
negative and the matrix is irreducible – because the 

elements of Q
i
 are strictly positive for i ≥ 2; the 

only exception is when c=0, which occurs if as-
sortment is complete and m′ has no effect on mat-
ing preferences. Therefore, by Perron–Frobenius 
theorem for non-negative matrices, λ is a real, 
simple and positive root of the characteristic equa-
tion, and its associated (right) eigenvector, ξ(π,π′) 
say, is the only (right) eigenvector of Q with posi-
tive elements (Gantmacher, 1960). Thus, m′ in-
vades if λ>1, it does not invade and is eliminated if 
λ<1. If m′ is neutral (i.e. π=π′), not surprisingly, 

λ(π,π)=1 and ξ(π,π)= 
T









3221 ,
2

1
,

2

1
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proved by the fact that the equations 
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are necessarily satisfied, being identical to the 
equilibrium conditions (10.1–5); since the elements 

of 
T









3221 ,
2

1
,

2

1
, pppp  are positive, 1 is the 

dominant eigenvalue of Q(π,π). 
The eigenvalues of Q can be calculated explic-

itly for all π and π′ (Appendix A). In particular, the 
dominant eigenvalue λ is given by 

 ηλ
WM

W1= , (12.1) 

where η is the largest root of the quadratic equa-
tion 

 η2 – (a+hb)η + hb(a–c) = 0. (12.2) 

By inspecting (12), (11.2) and (10), we notice im-
mediately that λ is independent of the rate of re-
combination, r, between the mating gene and the 
primary locus. Hence we can state the following 
general result. 
 
RESULT 2. Invasion of weak modifiers of assorta-
tive mating in a resident population at a symmetric 
polymorphic equilibrium under frequency-de- 
pendent disruptive selection does not depend on 
the rate of recombination between modifier genes 
and the trait locus. 
 
 

3.3. Inception of assortment and maintenance 
of complete isolation 

 
Our first use of these mathematical results will be 
to investigate whether a small degree of assortment 
can be successfully introduced in a random mating 
population and, at the opposite end, whether a 
population with complete assortment is immune 
from invasion by mutations that slightly decrease 
the strength of assortment. In case of random mat-
ing we already know (Result 1) that the resident 
population has a globally stable polymorphic equi-
librium, E0, where genotypic frequencies satisfy 

p1=p3 for adults and q1=q3=
4

1
 for the newborn. A 

symmetric equilibrium – with genotypic frequen-

cies q1=q3=p1=p3=
2

1
, a state that will be indicated 

by E∞ – obviously exists also in case of complete 
assortment. It can be proved that with no cost of 
mate choice, at n=∞, this equilibrium is globally 
stable provided only that selection is disruptive 
(α,β>0). On the other hand, for any finite n the 
stability of E∞ requires sufficiently strong disrup-
tive selection and is only local, because it can be 
shown that the two monomorphic equilibria, corre-
sponding to fixation of either alleles, e– or e+, are 
always stable. 

In a random mating resident population, where 
obviously mating preferences are 



 C. MATESSI et al. 50

 π(0)=π(1)=π(2)=1, 

we consider a mating gene mutation which has the 
effect to change these to 

 π′(0)=1 , π′(1)=1–kε , π′(2)=1–Kε, 

where k, K and ε are positive but ε is small (ε≈0). 
Straightforward calculations of the dominant ei-
genvalue λ(π,π′) from (12), using (11.2) and (8) 
give the following result 

( ) ( )
( ) ( )εεππλ o

h

hKkh +
+

++−=′
2

2

14

1
1,   for n=1, 

( ) ( )
( ) ( )εεππλ o

h

Kh +
+

++=′
218

1
1,  for n=2,…,∞. 

It is then clear that if the cost of assortment is very 
high – because by rejecting the first male she en-
counters a female forfeits mating altogether – a 
small amount of assortment cannot invade a ran-
dom mating population, irrespective of the inten-
sity of disruptive selection, 1–h, because λ<1 al-
ways. In all other cases, even if mate choice entails 
a cost (2≤n<∞), we see that λ>1, meaning that 
random mating can always be invaded by weak 
assortment, as long as there is some disruptive 
selection (h<1) in the population. 

In a resident population with complete assort-
ment, where mating preferences therefore are 

 π(0)=1 , π(1)=0 , π(2)=0, 

we consider a mutation which slightly reduces 
assortment, changing mating preferences to 

 π′(0)=1 , π′(1)=kε , π′(2)=Kε, 

where k, K and ε are positive and ε≈0. Notice that 
the resident population contains only the two ex-
treme types of individuals, of phenotype x= –1 and 
x=1, respectively, which effectively constitute two 
fully isolated species. Computing again λ(π,π′) 
from (12) we find 

( ) ( )22

4
1, εεππλ o

hkK ++=′  for n=1, 

( ) )(
)12(2

)12(
1, εεππλ o

Kn
n
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−−−=′  for n=2, 3,… , 

( ) ( )
)(
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2
1, εεππλ o

h

Kh +
−

−−=′  for n=∞. 

This result is entirely consistent with the previous 
one. If cost of mate choice is high (n=1) complete 
mating isolation cannot be maintained; in fact mu-
tations that slightly reduce assortment can always 
invade because λ>1. Hence, in this case assortment 
is disadvantageous at both extremes of its range. In 
all other cases (n>1), on the other hand, complete 
assortment is protected; in fact mutations that re-
duce it can never invade because λ<1. Hence, for 
n>1 assortment is advantageous at both extremes 
of its range. As a summary, we can state the fol-
lowing 

 
RESULT 3. Excepting the case of high cost of 
mate choice (n=1), an equilibrium random mating 
population under disruptive selection – as defined 
in Result 1 – is invaded by small levels of assort-
ment, while complete reproductive isolation be-
tween the two extreme types coexisting under this 
selective regime is protected against small reduc-
tions of assortment. 

 
 

4. Buildup of reproductive isolation 
 

Result 3 suggests the possibility that, in the model 
system we are considering, disruptive selection 
might generally cause the following long-term 
process: (1) increase of phenotypic variance to-
ward the maximum level allowed by random mat-

ing, s2=
2

1
, at the symmetric polymorphism E0; 

(2) inception of assortative mating; (3) progressive 
reinforcement of assortment through a sequence of 
invasions and fixations of mating gene mutants; (4) 
attainment of complete assortment, resulting in full 
reproductive isolation between the two extreme 
phenotypes which alone remain at state E∞ of the 
population, where phenotypic variance is s2=1, the 
largest possible value for a distribution over [–1,1]. 
If phases (1), (2) and (4) of this process are essen-
tially validated by previous results, the central and 
most critical phase (3) needs a number of results  



 ASSORTMENT WITH DISRUPTIVE SELECTION  51

yet to be ascertained, namely: (i) that a stable po-
lymorphic equilibrium, ES, of the two extreme 
alleles, (e–,e+), for the primary trait persists with 
continuity from E0 to E∞ as assortment increases 
throughout all intermediate levels, S, from random 
mating to complete isolation; (ii) that at each ES 
mating gene mutants invade if and only if they 
increase the degree of assortment; (iii) that each ES 
is an ESS with respect to mutations of the primary 
locus; (iv) that invasion generally does not result in 
polymorphism of mating genes but in replacement 
of the resident allele by the mutant. Ascertainment 
of these points is complicated by the difficulty of 
solving analytically equilibrium equations (10). 
Thus several of our results will be based on evi-
dence from numerical experiments rather than on 
analytical proofs. 

 
 
4.1. Polymorphism under disruptive selection  

with partial assortative mating 
 

In order to quantify degrees of assortment, from 
now on we will assume (Lande, 1981) that the 
mating preference,  π(|x–y|), of a female of trait x 
for a male y is given explicitly by 

 ( ) ( ){ }2exp yxSyx −−=−π , (13.1) 

so that S∈[0,∞) measures the strength of assort-
ment, S=0 corresponding to random mating and 
S=∞ to complete isolation. As long as the only trait 
values in the population are (–1, 0, 1), we need to 
be concerned with only three values of this func-
tion and in this respect, for convenience, we will 
also use the alternative notation 

 π(0)=1 , π(1)=exp{–S}=1–υ , 

 π(2)=exp{–4S}=(1–υ)4 (13.2) 

in which the strength of assortment is measured by 
υ∈[0,1). 

Although existence and local stability of poly-
morphic equilibria of the primary locus with partial 
assortment cannot be ascertained analytically, we 
can easily obtain some hint by looking at the sta-
bility of fixations of the two alleles e– and e+. By 
the symmetries of the model the two fixations are 
stable or unstable simultaneously. These symme-

tries also imply that if there is an odd number of 
polymorphic equilibria one of these must be sym-
metric (i.e. with p1=p3). Thus, if instability of fixa-
tions prevails, a likely possibility – but by no 
means a certainty – is that there is a globally stable 
symmetric equilibrium. Conversely, if fixations are 
stable a possibility is that there is an unstable 
symmetric equilibrium or that the symmetric 
polymorphism is stable, but is “flanked” by two 
unstable polymorphisms. In the latter case the do-
main of attraction to the symmetric equilibrium 
might be so small as to devoid in practice such 
equilibrium of any evolutionary significance, be-
cause small random fluctuations may easily throw 
a polymorphic population into the domain of at-
traction of either fixation. 

If we denote by pi and ip′  (i=1,2,3) the geno-
typic frequencies of the primary locus among the 
adults of two successive generations, the recur-
rence equations linking these variables are 

 ,3,2,1, ==′ iq
W

W
p i

i
i  (14) 

where the genotypic frequencies of the intervening 
newborn stage, iq , are determined in terms of the 

ip ’s by Eqs (10.1–4) and the fitnesses Wi and W  
are given by Eqs (10.6–9). Near fixation of e–, 
where p2,p3≈0, with incomplete assortment these 
equations are approximated by 

 ( ) ( )22
2112

2 2

θθβ1 popp +++=′ ,  ( )23 pop =′ . 

Thus, fixation of e– is stable if 

 ( ) ,1
2

1 2112 <++ θθβ  

where the mating rates, θij, are evaluated at p1=1. 
Computing these rates explicitly according to (8) 
we conclude that fixation of e–, and simultaneously 
that of e+, is stable if 

 ( ) ,1
2

2
1 <−+ υβ  (15) 

when there is no cost of mate choice (n=∞). Thus, 
stability of fixations is facilitated by high levels of 
assortment (high υ) and low levels of selection 
(low β). In fact, without selection fixations would 
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be stable with any positive amount of assortment. 
But, if selection is sufficiently strong (β>1) fixa-
tions never become stable, irrespective of the 
strength of assortment. When there is some cost of 
mate choice, stability of fixations is more easily 
achieved, and it always occurs if assortment is 
sufficiently strong, irrespective of the strength of 
selection.  

We have made a numerical survey of the stable 
equilibria of (14), in case of no cost of mate 
choice, by iterations of these recurrence equations 
for a large number of parameter values. We found 
that the symmetric equilibrium is always present 
and that it is globally stable whenever the mo-
nomorphic equilibria are unstable. Moreover the 
local stability of such equilibrium does not neces-
sarily vanish when the monomorphic equilibria are 
stable, that is when (15) is satisfied. Recalling 
(13.2), this condition may be rewritten in terms of 
S as 

 







−
+=>
β
β

1

1
lnLSS . (16) 

The way the size of the domain of attraction to the 
symmetric equilibrium depends on selection (α,β) 
and intensity of assortment, S, when (16) is true is 
illustrated by Table 2. The table shows examples 
of results obtained from numerical iterations of 
(14) beginning from a population with a given 
frequency, p<0.5, of allele e+ (e–) and genotypic 
frequencies in Hardy–Weinberg proportions. All 
such iterations converged either to fixation of e– 
(e+) or to the symmetric equilibrium, depending on 
the value of p. The relative size of the domain of 
attraction to the symmetric equilibrium can thus be 
estimated by 1–2pmax, where pmax is the largest 
value of p such that convergence is to fixation of e– 
(e+). The symmetric equilibrium cannot be reached 
from any Hardy–Weinberg population and is 
probably unstable when pmax=0.5. The fixations are 
unstable when pmax=0, which, by (16), occurs when 
S≤SL. Table 2 reports values of pmax for selected 
values of {α,β,S}. For any given {α,β}, pmax is not 
monotone with respect to S∈[SL,∞). In fact, as S 
increases, pmax first increases up to a maximum and 
then decreases, apparently going to zero as S goes 
to infinity. The maximum of pmax decreases as α or 
β increase, and does not reach 0.5 unless both α 

and β are small. In 
summary, from this 
numerical analysis it 
emerges that a stable 
symmetric equilibrium 
with a substantial do-
main of attraction al-
ways exists, unless se-
lection is weak and as-
sortment is neither too 
weak nor too strong. 

 
 

4.2. Progress  
of assortment 

 
We now analyze the 
conditions under which 
a resident population at 
a stable symmetric equi-
librium ES due to dis-
ruptive selection and 
assortative mating of 
strength  S  can  be  in- 

TABLE 2 

Domain of attraction to fixation of e– or e+ 

β=0.1 β=0.3 

                 pmax                  pmax 

S α/β=0.1 α/β=0.9 S α/β=0.1 α/β=0.9 

0.201 0.0000 0.0000 0.619 0.0000 0.0000 

0.202 0.0069 0.0061 0.620 0.0002 0.0002 

0.21 0.04 0.03 0.65 0.008 0.006 

0.22 0.09 0.07 0.66 0.010 0.007 

0.25 0.24 0.16 0.68 0.014 0.010 

0.28 0.50 0.25 0.70 0.017 0.013 

0.30 0.50 0.28 0.80 0.028 0.019 

0.40 0.50 0.41 0.90 0.031 0.020 

0.50 0.50 0.35 1.00 0.030 0.018 

0.80 0.37 0.17 1.50 0.016 0.007 

1.00 0.17 0.10 2.00 0.012 0.002 
 
Note: for the indicated values of the selection parameters, β and α/β, and of the strength of 
assortment, S, the table shows the largest value, pmax, of the frequency of allele e+ (e–) such that 
a population, starting from an Hardy–Weinberg composition with this allelic frequency, con-
verges to fixation of e– (e+). Whenever pmax<0.5, a population with initial frequency, p, such 
that pmax<p≤0.5 converges to the symmetric polymorphic equilibrium. 
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vaded by a mutant mating gene changing the 
strength of assortment to S′. As demonstrated in 
§ 3, the basic tool for this analysis is the eigen-
value, λ, defined by Eqs 11–12. Given the assump-
tion of (13), this eigenvalue is a function of both S 
and S′ or, equivalently, of υ= 1–exp{–S} and υ′= 
1–exp{–S′}, so that we may write λ=λ(υ,υ′). Since 
we are concerned only with mutations of weak 
effect, such that υ′≈υ, and recalling that λ(υ,υ)=1, 
we may approximate λ by 

( ) ( ) ( ) ( ).,
1, υ−υ′+υ−υ′

υ′∂
υ′υλ∂+=υ′υλ

υ=υ′
o  

This means that the criterion for invasion by 
(weak) mutations that increase the strength of as-
sortment is 

 
( )

,0
, >

υ′∂
υ′υλ∂

υ=υ′
 (17.1) 

while the reversed inequality is the criterion for 
invasion by mutations that reduce the strength of 
assortment. Considering that, by (12.1), the rela-
tion between λ and the largest root, η, of the quad-
ratic equation (12.2) is of the form λ=Cη, where 
the factor C is independent of υ′ and is positive, 
we see that (17.1) reduces to the equivalent condi-
tion 

 
( )

0
, >

υ′∂
υ′υη∂

υ=υ′
. (17.2) 

We shall limit our analysis to the type of assor-
tative mating that has no cost of mate choice (n=∞; 
Eq. 9) which is mathematically simpler, and is the 
most favorable to the evolution of assortment as 
indicated by previous results. In Appendix B we 
demonstrate that in this case condition (17.2) re-
duces to the following equivalent criterion 

 ∆(υ) > 1 , (18.1) 

where 
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and the equilibrium frequencies, q2 and p2, of new-
born and adult heterozygotes e– | e+, respectively, in 
the resident population are, by (10), solutions of 
the following pair of equations 
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A complete analysis of this invasion criterion 
would need the explicit general solution of equilib-
rium equations (18.4–5), which is not feasible be-
cause it amounts to finding the roots of a fourth 
degree algebraic equation. However, by using 
standard perturbation techniques (e.g. Nayfeh, 
1981), we can determine accurate conditions of 
invasion in the limiting cases of (i) strong assort-
ment (υ≈1), (ii) weak assortment (υ≈0) and 
(iii) weak assortment vis-à-vis weak selection 
(υ,α,β≈0). 

Consider first the case of strong assortment, 
where 1–υ≈0. Our approach will be to determine 
∆(υ) as an expansion in powers of (1–υ), 

 ( ) ( ) ( ) ...,11 2
210 +υ−+υ−+=υ∆ ccc  

of which it is sufficient to retain only terms of 
lower power, as long as 1–υ is small. To find the 
sequence of coefficients, (c0, c1, …), of this expan-
sion we first have to solve (18.4–5) for (p2,q2), 
again in the form of power expansions in (1–υ). Let 

 ( ) ( ) ( ) ...,11* 2
2102 +υ−+υ−+=υ= aaapp  

 ( ) ( ) ( ) ...,11* 2
2102 +υ−+υ−+=υ= bbbqq  

be the solution. Then, if we substitute (p*,q*) for 
(p2,q2) in (18.4–5) we obtain a pair of identities, 
each of which equates two power series in (1–υ), 
which must be satisfied for all υ. This means that 
the coefficients of equal powers of (1–υ) on the 
two sides of each identity must be equal. This con-
dition then provides a pair of equations for each 
power of (1–υ) that can be solved to obtain the 
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pairs of coefficients (a0,b0), (a1,b1), etc. Following 
this procedure we find that a0=b0=…=a3=b3=0 and 

 ( ) ( ) ( ) ...,1
21

12
* 4 +υ−

β+α+
β+=υp  

 ( ) ( ) ( ) ...1
21

12
* 4 +υ−

β+α+
β+α+=υq .  

Substituting this solution in (18.2) and expressing 
the right hand side of this equation as a power se-
ries in (1–υ) we finally find 

 ( ) ( ) ...1
1

1 4 +υ−
β+α+

α+=υ∆  . (19) 

Comparing this result to the criterion (18.1), we 
immediately conclude that, irrespective of the 
strength of selection on the primary trait, provided 
that it is disruptive (α,β>0), only mutants that in-
crease the strength of assortment can invade a resi-
dent population in which assortment is already 
sufficiently strong. In case of weak assortment 
(υ≈0), proceeding in a similar way to determine 
∆(υ) as a power series in υ, we find 
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Hence, for any fixed (α,β) provided that α,β>0, 
∆(υ)>1 if assortment is weak enough, so that only 
mutants that increase the amount of assortment can 
invade. 

These two results extend to the respective 
neighborhoods the invasion properties that in § 3 
were demonstrated to hold at the two extremes of 
assortment level, υ=1 and υ=0 (Result 3), suggest-
ing that under disruptive selection assortment al-
ways tends to increase in strength. This is not true, 
however, because in (20) we can observe that if α 
is let tend to zero for any fixed υ, then ∆(υ) be-
comes less than one. Indeed, if we expand ∆(υ), as 
given by (20), in power series also with respect to 
α and β, retaining only terms linear in α, β and υ, 
it results that for weak selection and weak assort-
ment 

 ( ) ...,
4

1

2

1
1,, +−+=∆ υαβαυ  (21) 

showing that, for small α, β and υ, ∆ is greater 
than one only if υ<2α, approximately. This equa-
tion, together with (19) proves the following 

 
RESULT 4. At least for weak selection there are 
two thresholds (singularities) in the evolution of 
assortment, υ0(α,β) and υ1(α,β), where 
∆(υ0)=∆(υ1)=1, and such that all levels of assort-
ment, υ, in the ranges 0≤υ<υ0 and υ1<υ<1 are 
invaded only by mutants that increase assortment. 
Of the levels of assortment in the remaining middle 
range, υ0<υ<υ1, at least those that are close to υ0 

are invaded only by mutants that decrease assort-
ment. For small α and β, υ0(α,β)≈2α. 

This result is obviously quite important because 
it implies that, at least when disruptive selection is 
weak, evolution of assortative mating through mu-
tations of small effect cannot carry a population all 
the way from random mating to sympatric speci-
ation. Some degree of assortment can indeed ac-
cumulate in all cases, but for weak selection it 
cannot progress beyond the rather low level υ0. It 
is therefore essential to ascertain whether a suffi-
ciently high level of selection removes such limita-
tion, allowing sympatric speciation to evolve. 
There is also some interest in refining the above 
result with respect to the behavior of ∆(υ) in the 
middle range (υ0,υ1), to verify in particular 
whether assortment tends to diminish [i.e. ∆(υ)<1] 
in the whole interval, or whether more complex 
behaviors [e.g. other roots of ∆(υ)=1] occur. We 
have obtained partial answers to these questions by 
solving numerically for many values of (α,β) the 
equation ∆(υ)=1 in the interval 0<υ<1, which of 
course requires simultaneously solving equations 
(18.4–5). Some examples of the results are re-
ported in Table 3 which, for selected values of 
(α,β), shows the values of S= –ln(1–υ) that solve 

( ) ( ) .11 =−∆=∆ −Seυ   
As illustrated in Table 3, if selection is suffi-

ciently weak (β or α/β small) there are exactly two 
thresholds, so that assortment tends to decrease 
anywhere in the middle range (υ0,υ1). As selection 
is made stronger this interval becomes narrower 
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because υ0 increases and υ1 decreases. When β or 
α/β are large enough the two thresholds merge and 
disappear. Hence, for sufficiently strong selection, 
increasing assortment is always favored irrespec-
tive of the current degree of assortative mating in 
the population. 

Comparing these numerical results about the 
roots of ∆(υ)=1 with those about the stability of the 
symmetric equilibrium discussed above (cf. Ta-
ble 2) it can be seen that the symmetric equilibrium 
is always stable at the parameter points, {α,β,υ}, 
where invasion is by mutants that increase assort-
ment [i.e. ∆(υ)>1]. For example, for α/β=β=0.1 we 
see from Table 3 that invading mutants increase 
assortment whenever 0<S<0.02 or S>0.855, and 
from Table 2 we see that in the first of these ranges 
the symmetric equilibrium is globally stable (both 
fixations are unstable), while in the second it is 
locally stable with a reasonably large domain of 
attraction (pmax>0.37). 

We made some numerical test to verify whether 
the symmetric equilibrium, besides being stable, is 
also an ESS with respect to primary trait mutants at 
points, {α,β,υ}, of the parameter space where 
∆(υ)>1. The tests were made by iterating the recur-
rence equations for the genotypic frequencies of a 
population at a symmetric equilibrium which had 

been contaminated by a small frequency of a mu-
tant allele of the primary locus with effect chosen 

at random in 





−

2

1
,

2

1
. For each given point of the 

parameter space a thousand random mutants were 
checked. The results suggest that the symmetric 
equilibrium is indeed a polymorphic ESS of the 
primary trait wherever assortment tends to in-
crease. In fact in all cases where ∆(υ)>1 the mutant 
allele disappeared from the population and the 
original symmetric equilibrium was restored. Inter-
estingly, we also found cases where the symmetric 
equilibrium did not have the ESS property, and this 
occurred when ∆(υ)<1, that is when a decrease of 
assortment was favored. 

 

4.3. Fixation of invading mutants of assortment 
 

Let υ, υ' and υ" be the levels of assortment associ-
ated respectively to genotypes m|m, m|m' and m'|m' 
of a mating gene of which m is the resident allele 
and m' is a mutant that has invaded, and suppose 
that ∆(υ)>1. Under the assumption that mutations 
have small effect both υ' and υ" are very close to 
υ, and υ'>υ because m' was able to invade. If par-
tial dominance prevails in the expression of mating 

genes, the heterozygote 
phenotype, υ', is between 
the phenotypes of the two 
homozygotes, so that 
υ<υ'<υ". Hence, if m' were 
the resident allele m would 
not be able to invade it if 
∆(υ")>1, while such inva-
sion would occur if 
∆(υ")<1. In other words, in 
the short-term dynamics of 
the two alleles m and m', 
fixation of m is unstable and 
fixation of m' is stable in the 
first case, while both fixa-
tions are unstable in the 
second. It is then certain that 
for ∆(υ")<1 a polymorphism 
of resident and mutant allele 
is maintained. On the other 
hand, it is plausible, al-
though by no means certain 
in such a complex selection 

TABLE 3 

Thresholds of assortment where evolution changes direction 

 α/β 
β 0.1 0.3 0.5 0.7 0.9 

0.1 0.020 

0.855 

0.060 

0.805 

0.105 

0.750 

0.155 

0.690 

0.220 

0.620 

0.3 0.055 

0.815 

0.190 

0.660 

– – – 

0.5 0.090 

0.780 

– – – – 

1.0 0.150 

0.720 

– – – – 

2.0 0.250 

0.635 

– – – – 

4.0 0.410 

0.495 

– – – – 

4.2 – – – – – 

Note: for given pairs of β and α/β the table shows the roots of ( ) 11 =−∆ −Se   for S>0. 

Dashes indicate that for the given (α,β), ∆>1 for all S>0, so that only mutants that in-
crease assortment invade. 
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system, that for ∆(υ")>1 there is no polymorphism 
of m and m', and that invasion by m' is followed by 
its fixation. 

Based on these considerations we could expect 
that, with partial dominance of mating genes, every 
invasion is followed by fixation of the mutant al-
lele at all assortment levels υ∈[0,1) when the dis-
ruptive selection parameters, {α,β}, are so large 
that ∆(υ)>1 anywhere in [0,1) (see Table 3). When 
the strength of selection is small enough that the 
threshold υ0(α,β) exists, fixation of invading al-
leles can be expected to occur for assortment levels 
υ∈[0,υ0) only if υ is far enough from υ0 that 
υ"<υ0. But when υ is in the vicinity of υ0 and a 
mutation appears such that υ<υ0<υ", a polymor-
phism of resident and mutant allele is established. 

These conjectures have been completely con-
firmed in a large number of numerical tests that we 
performed by iterations of the exact recurrence 
equations of the genotypic frequencies for the two-
locus system with the two alleles ( )+− ee ,  at the 
primary locus and a pair of alleles, (m,m'), at a 
mating locus. The mutant allele m' was introduced 
at the frequency of 10–5 in a population that had 
reached the one-locus symmetric equilibrium un-
der assortative mating of level S= –ln(1–υ) due to 
the resident homozygotes, m|m. The levels of as-
sortment due to mutant heterozygotes, m'|m, and 
homozygotes, m'|m', were measured by  
S'= –ln(1–υ') and S"= –ln(1–υ") respectively, and 
S' was chosen in agreement with the assumption of 
partial dominance and such as to ensure that m' 
would invade m. After introduction of the muta-
tion, iterations were ended when either the distance 
between genotypic frequencies in two consecutive 
generations had become less than 10–14 – indicating 
attainment of an equilibrium – or generation num-
ber 300,000 had been reached. If at the end of it-
erations the frequency of the mutant allele m' was 
larger than 0.99 we assumed that the mutation 
would go to fixation. In some cases evolution 
could have been so slow that at the end of itera-
tions the frequency of m' was still below the 
threshold of 0.99, although its fixation would occur 
eventually. To control for this possibility, so as to 
distinguish it from genuine polymorphism, we 
made a second series of iterations starting at the 
same one-locus equilibrium as in the first series but 
with the initial frequency of m' set equal to 0.99. 
When these iterations ended by the same criterion 

as before, it was assumed that a stable polymor-
phism of resident and mutant allele existed if the 
frequency of m' was now less than its initial fre-
quency of 0.99. Otherwise it was assumed that the 
mutation would go to fixation. 

The numerical tests were made for each of the 
48 combinations of four values of α/β (0.1, 0.2,  
0.5, 1), six values of β (0.1, 0.5, 1, 2, 4, 5) and two 
values (0.05, 0.5) of the rate of recombination, r, 
between the primary locus and the mating locus. 
For each pair {α,β} such that ∆(υ)>1 everywhere 
in [0,1), five sets of mating phenotypes, {S,S',S"}, 
were tested with the two recombination values. 
Each set was chosen at random subject to the fol-
lowing constraints: 

 0< S <1 , S + 0.01< S" < S + 0.1, 

 S + 0.01 < S' < S". 

These were the tests of type I. For each pair {α,β} 
where the threshold ( )[ ]βαυ−−= ,1ln 00S  exists, 
five sets of mating phenotypes for tests of type II 
and five for tests of type III were used with the two 
values of r. These ten sets were generated at ran-
dom subject to the following constraints: 

S0 – 0.02 < S < S0 – 0.01,  S + 0.001 < S' < S", 

for both types of tests and 

S + 0.001 < S" < S0 – 0.001,  for type II, 

S0 + 0.001 < S" < S0 + 0.02,  for type III. 

In total 150 tests of type I and 90 tests each of 
types II and III were made. In agreement with our 
conjecture all tests of types I and II ended with 
fixation of the mutant allele, while all tests of type 
III ended with polymorphism of the resident and 
mutant alleles. 

 
 
4.4. Long-term evolution of assortative mating 
 

We have thus provided analytical proofs or nu-
merical evidence in favor of all the elements re-
quired to validate the third phase of the long-term 
evolutionary process outlined at the beginning of 
this section, uncovering meanwhile the important 
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qualification that unlimited progress of assortative 
mating to sympatric speciation can only occur if 
disruptive selection is strong enough. To summa-
rize the findings of this section we can therefore 
state the following: 
 
RESULT 5 (based in part on numerical evidence). 
If the strength of disruptive selection – as meas-
ured by {α,β} – is sufficiently high, and if mate 
choice can occur without cost, assortative mating 
for the selected trait emerges in a random mating 
population and becomes progressively stronger, 
through a sequence of invasions and fixations of 
mutations of small effect, until complete reproduc-
tive isolation between the two extreme morphs in 
the population is achieved, effectively concluding 
a process of sympatric speciation. In the course of 
this process, with respect to the primary trait the 
population remains in a state of symmetric poly-
morphic equilibrium, ES, which changes with con-
tinuity, from the initial state E0 to the final state 
E∞, as the strength of assortment, S, increases from 
zero to infinity. In particular the phenotypic vari-

ance increases monotonically from 
2

1
 to 1. Every 

equilibrium ES is stable in the short-term dynamics 
and cannot be invaded by any allele of the primary 
locus different from the resident alleles ( )+− ee , . 
On the other hand, if the strength of disruptive 
selection is too small, the process just described 
does not proceed to complete isolation because 
there exists a threshold S0(α,β) such that, when the 
increasing strength of assortment S reaches its 
vicinity, a stable polymorphism of assortment lev-
els, both smaller and larger than S0, arises in the 
population. 
 

How evolution will further proceed in the long 
term, once the vicinity of S0 has been reached, 
depends on the nature of this singular point, which 
is determined by the second derivative (with re-
spect to υ′) of the dominant eigenvalue, λ(υ0,υ′), 
of the invasion dynamics for a resident population 
with assortment level S0 = –ln(1–υ0). This is diffi-
cult to analyze because υ0 cannot be computed 
exactly. However, numerical calculations of 
λ(υ,υ′), for υ very close to υ0 and for a wide range 
of values of υ′, indicate that λ(υ0,υ′)=1 for all υ′. 
In this case then no mutant can actually invade S0, 
but some might persist in the population as rare 

neutral variants. This means that S0 is a “weak” 
ESS, an evolutionary singularity of a kind that is 
well known in several adaptation problems. For 
example, the 1:1 sex allocation ratio of classical 
sex-ratio theory is an ESS of this type (e.g. Char-
nov, 1982; Karlin and Lessard, 1986). We may 
then conclude that if disruptive selection is not 
strong enough, evolution of assortment through 
mutations of weak effect, starting from random 
mating cannot progress to complete isolation and 
stops at the moderate ESS level S0. 

 
 

5. Discussion 
 

Our primary intent in this article was to examine 
the long-term consequences, in a sexually repro-
ducing species, of the regime of disruptive selec-
tion on a continuous trait characterized by that 
particular type of evolutionary singularity – named 
PEAST (Christiansen, 1991) or “evolutionary 
branching point” (Geritz et al., 1998) – which, 
being continuously stable (convergence stable), is 
an evolutionary attractor for monomorphic popula-
tions but at the same time can be invaded by any 
mutation. In this inquiry we addressed the case 
where the genetic control of the selected trait is 
additive. The non-additive case, which behaves 
very differently, will be examined in another paper 
(Matessi and Gimelfarb, 2002, in preparation). To 
permit a mathematical analysis, we simplified the 
problem by the assumption that variation of the 
trait is determined by a single locus and is confined 
to the finite interval [–1,1]. Moreover, we assumed 
a simple frequency-dependent selection model that 
approximates, in the vicinity of the singularity at 
x°=0, the many diverse and complex systems of 
ecological interactions that give rise to a PEAST 
singularity, including scramble competition (Chris- 
tiansen and Loeschcke, 1980; Christiansen, 1991; 
Doebeli, 1996; Dieckmann and Doebeli, 1999) and 
habitat heterogeneity (Geritz et al., 1998; Kisdi and 
Geritz, 1999). 

The first and most characteristic consequence of 
this selection regime is not only the emergence of 
genetic polymorphism, described in Christiansen 
and Loeschcke (1980) and in Christiansen (1991), 
but also, and more specifically, the likely attain-
ment of a polymorphic long-term equilibrium (po-
lymorphic ESS) as demonstrated in Kisdi and 
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Geritz (1999) and in this article. Thus, we could 
say that MEAST – or continuously stable ESS – 
and PEAST type singularities are pointers, respec-
tively, to monomorphic and polymorphic long-term 
equilibria. There is, however, a major difference 
between the two cases. While in case of a MEAST 
the equilibrium and its stability are direct conse-
quences of the local properties of selection at the 
singularity, in case of PEAST the very existence of 
a polymorphic long-term equilibrium depends 
critically on the global properties of the fitness 
landscape. For example, in our model the equilib-
rium is unique while in the model of Kisdi and 
Geritz (1999) there may be up to three equilibria 
although both models entail a single PEAST. The 
examples of extinction of evolutionary branches 
found by Geritz et al. (1999) in a model with 
clonal reproduction indicate that with sexual re-
production there could be cases where the buildup 
of polymorphism around a PEAST is only transient 
and is followed, for example, by attainment of a 
monomorphic equilibrium at a MEAST. 

The presence of polymorphism renders the 
mathematical analysis of long-term evolution near 
a PEAST rather difficult, even with single locus 
genetics as assumed in this article and in Kisdi and 
Geritz (1999). The difficulties would be forbidding 
with multilocus genetics. From the point of view of 
the method of analysis of polymorphic ESS there is 
an important difference between our approach and 
that of Kisdi and Geritz (1999). We assume that, 
irrespective of the state of the population, a muta-
tion of the primary locus can produce any one of 
the alleles that are possible for this locus. Hence, at 
any time the effect of a mutant allele can be any 

value in the interval 



−

2

1
,

2

1
 because this is the 

set of all possible allelic effects in our model. It 
follows that for us a long-term equilibrium (ESS) 
is a population state that cannot be invaded by any 

of the alleles with effect in 



−

2

1
,

2

1
. Kisdi and 

Geritz (1999) make a very different assumption 
with respect to which mutations are possible at any 
given moment. In fact they assume that the effect 
of a mutant allele is always close to the effect of 
the resident allele from which the mutation origi-
nally arose. Thus if E, say, is the set of effects of 
all possible alleles of the primary locus and if, for 
example, e1 and e2 are the effects of the resident 

alleles at a certain moment, then the effect of any 
mutant that could appear in the population at this 
moment cannot be an arbitrary element of E but 
only a value sufficiently close to either e1 or e2. It 
follows that, according to Kisdi and Geritz, a 
polymorphism with the pair of alleles (e1,e2) is an 
ESS if and only if it cannot be invaded by any 
allele e that is close either to e1 or to e2. This dif-
ference means that what for Kisdi and Geritz is a 
necessary and sufficient condition of ESS, from 
our point of view is just a necessary condition. 
From a biological point of view, and if we were to 
measure distances between alleles, for example, by 
the number of different nucleotides between the 
corresponding DNA sequences, the assumption of 
Kisdi and Geritz would be entirely justified, be-
cause generally more than one mutation event 
separates two homologous sequences that differ at 
more than one nucleotide site. Unfortunately, it is 
not generally true that distances in this molecular 
metric correlate with the distances at the level of 
expressed phenotype. 

At the unique polymorphic ESS that exists in 
our model a half of the population consists of het-
erozygotes which, because of their intermediate 
phenotype, x=0, have the lowest fitness. The ho-
mozygotes that make up for the rest are evenly 
distributed among the two extreme and most fit 
phenotypic values, x = –1 and x = 1. It is then natu-
ral to expect that in such a situation assortative 
mating for the selected trait will be advantageous 
and that progressive reinforcement of this mating 
pattern by natural selection will result in complete 
reproductive isolation between the two extreme 
types with disappearance of the intermediate het-
erozygotes. This, of course, is the classical sce-
nario of sympatric speciation about which a rich 
theoretical literature has accumulated, probably 
beginning with the paper by Maynard Smith 
(1966). A large majority of these studies belong to 
the class of the “two-allele” models as defined by 
Felsenstein (1981). Their common feature is that 
evolution of assortment for the selected trait is 
conceived as resulting from the establishment of a 
strong correlation – due to linkage disequilibrium – 
between the selected trait and an initially inde-
pendent trait for which a given level of assortative 
mating already existed in the population for some 
unspecified reason. The general result of this ap-
proach is that assortment for the selected trait is 
established only if the strength of disruptive selec-
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tion is above a certain threshold, that decreases as 
the preexisting level of assortment for the other 
trait increases (e.g. Maynard Smith, 1966; Udovic, 
1980; Felsenstein, 1981; Dieckmann and Doebeli, 
1999; Kondrashov and Kondrashov, 1999; Geritz 
and Kisdi, 2000). According to Felsenstein (1981), 
in this class of models, speciation through evolu-
tion of assortment is more difficult to achieve than 
in the other class identified by him, that of the 
“one-allele” models, to which our model also be-
longs. Evolution of assortment in this case is con-
ceived as resulting from the accumulation of modi-
fiers of mating behavior that induce and reinforce 
direct assortment for the selected trait (e.g. May-
nard Smith, 1966; Doebeli, 1996; Dieckmann and 
Doebeli, 1999). Probably the reason why models 
of the first type have been preferred that they were 
considered biologically more plausible (Maynard 
Smith, 1966). This opinion may be correct in cases 
where the primary trait subject to disruptive selec-
tion measures biochemical or physiological activi-
ties which cannot be perceived by potential mates. 
But there is no compelling reason to question the 
possibility of direct assortative mating for the pri-
mary trait if it reflects aspects of external morphol-
ogy which at the same time are directly involved in 
ecological interactions, as for example body size, 
or bill size in birds, which often are strongly re-
lated to the trophic niche (Hutchinson, 1959; 
MacArthur, 1972; Cody, 1974). 

In theoretical studies of sympatric speciation 
through assortative mating it is generally assumed 
that mate choice occurs without cost. However, 
mating preferences could significantly prolong the 
time required to find a mate, particularly if the 
preferred type is rare. Thus there may be cases in 
which, due to, for example, low population density 
or short-mating season, the probability of mating 
and reproducing is substantially reduced by a 
strong preference or by the rarity of the preferred 
mate. The assortative mating model of Gavrilets 
and Boake (1998) that we adopted accounts for the 
possibility of such effects through the parameter n, 
representing the maximum number of males that a 
female is allowed to encounter while searching for 
a mate. Although we analyzed progress of assort-
ment only in case of no cost (n=∞), other results 
that we obtained indicate that evolution of assort-
ment is more difficult if mate choice has a cost. 
Thus, when n=1 assortment cannot invade random 

mating, and complete assortment is invaded by a 
reduction of its intensity. Hence, we do not expect 
any evolution of assortative mating in cases where 
females can mate only by accepting the first male 
they encounter. Moreover, our stability analysis of 
the equilibria of the primary trait under assortment 
indicates that stable polymorphism – obviously a 
prerequisite for any progress of assortment – is less 
likely to occur if n<∞. 

When there is no cost of mate choice (n=∞), or 
even if such cost is moderate (1<n<∞), our model 
agrees in some respects with the expectations im-
plied by Felsenstein’s classification. First of all, 
the rate of recombination between the primary 
locus and the mating modifiers has no influence on 
the evolution of assortment. Second, there is no 
threshold amount of selection necessary for incep-
tion of assortative mating. Provided that selection 
is disruptive, modifiers inducing some assortment 
for the selected trait can always invade a random 
mating population. If n=∞, the same is true when 
assortment is already strong because, irrespective 
of the strength of disruptive selection, mutants that 
further increase the amount of assortment can al-
ways invade, and complete isolation cannot be 
destroyed by invasion of modifiers that reduce the 
amount of assortment. Thus, if mate choice is not 
costly, complete isolation is a continuously stable 
ESS of mating behavior at any level of disruptive 
selection. If cost of mate choice is moderate, com-
plete isolation is still an ESS whenever coexistence 
of the two extreme types is stable, but such stabil-
ity occurs only if selection is sufficiently strong. 

The concordance with the expected properties 
of Felsenstein’s “one-allele” models however van-
ishes, even in case n=∞, with regard to the crucial 
question of whether sympatric speciation (com-
plete assortment) can evolve starting from a ran-
dom mating population. In this respect, our result 
rather resembles that of Felsenstein’s “two-allele” 
models because we find that an increase of the 
strength of assortment is favored at all assortment 
levels, from random mating to complete isolation, 
only if the disruptive selection parameters, α and 
β, are large enough. If α and β are small, evolution 
of assortment changes direction at two thresholds, 
S0 and S1, of the strength of assortment S∈[0,∞): 
assortment increases when it is either very weak, 
0≤S<S0, or very strong, S>S1, but it decreases when 
its strength is intermediate, S0<S<S1. Thus, starting 
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from random mating (S=0), assortment does indeed 
increase but it cannot progress, through mutations 
of small effect, beyond the rather modest ESS level 
S0=S0(α,β) (see Table 3), where its evolution 
comes to an end. 

An apparently similar behavior is briefly re-
ported by Doebeli (1996), among the results of a 
numerical study of sympatric speciation due to 
direct assortative mating for a continuous trait 
subject to disruptive selection, caused by scramble 
competition. The genetics of the trait is simulated 
by an hypergeometric model of segregation for 
twenty additive, haploid and unlinked loci. The 
rather complex selection model has many parame-
ters, none of which is indicated as related to 
strength of selection. However, the parameter 
whose qualitative effects on the evolution of assor-
tative mating are described is the variance of the 
competition function, which is Gaussian as in the 
disruptive selection model used by Christiansen 
and Loeschcke (1980). Hence, from the equiva-
lence of the latter with our model, we might infer 
that such parameter is inversely related to our se-
lection parameters, {α,β}. Doebeli finds that if the 
variance of the competition function is high (weak 
selection), starting from random mating the degree 
of assortment evolves to a relatively moderate 
equilibrium value, but it evolves to a much higher 
level if initially assortment was already intense. On 
the other hand, if competition is sufficiently loose  
(low variance, strong selection) the lower equilib-
rium level disappears so that very strong assort-
ment can evolve starting from random mating. It 
seems clear that these numerical results of Doebeli 
reflect the two thresholds, S0 and S1, of which we 
proved here the existence with weak selection and 
the disappearance with strong selection. 

In a recent individual-based simulation study of 
sympatric speciation due to disruptive selection, 
Dieckmann and Doebeli (1999) do not report any 
evidence of the threshold effect of selection inten-
sity on the evolution of assortative mating, in case 
of direct assortment for the selected trait. This is 
surprising because their model of mating is the 
same as that used by us (with n=∞) and by Doebeli 
(1996), and their representation of disruptive selec-
tion due to scramble competition is even closer to 
ours than that of Doebeli (1996), because it con-
sists of a Lotka–Volterra competition model with 
Gaussian resource spectrum and Gaussian compe-

tition function, exactly as in Christiansen and 
Loeschcke (1980). In fact it appears that in these 
simulations almost complete isolation between two 
extreme types is achieved provided only that the 
variance of the resource spectrum is greater than 
the variance of the competition function. From the 
equivalence of the model of Christiansen and 
Loeschcke with ours we can see that this is simply 
the condition that α>0, or that selection be disrup-
tive. On the other hand, in accordance with the 
general behavior of the “two-allele” models of 
Felsenstein’s classification, in the simulations deal-
ing with the case of assortment directed to a neu-
tral marker trait, reproductive isolation is attained 
only if the variance of the competition function is 
less than some low threshold, which, in the terms 
of our model, is equivalent to the requirement that 
both α and β be sufficiently large. It is likely that 
the apparent discrepancy between the simulations 
of Dieckmann and Doebeli (1999) and our result 
on the existence of the two thresholds, S0 and S1, 
under weak selection can be explained by the fact 
that our analysis, as well as the numerical study of 
Doebeli (1996), assumes mutations of mating loci 
with a very small effect and considers only inva-
sions by one mutation at the time. But these as-
sumptions do not really apply to the simulations of 
Dieckmann and Doebeli (1999) because there the 
genetic assumptions were such that, starting from 
random mating, only five mutation events on dif-
ferent loci were sufficient to produce an haplotype 
that, in homozygote condition, would code for 
essentially complete assortment, while mutation 
rate, population size and number of loci were such 
that about 10 mutations occurred each generation, 
on average. It seems quite possible that under these 
conditions, simply by the pressure of mutation and 
genetic drift, a population could in a few genera-
tions, so to speak, jump over the region [S0,S1], 
where an increase of assortment is not permitted, 
thereby landing in the basin of attraction toward 
complete assortment. 
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APPENDIX  
 

A) 
 

In this appendix we compute the eigenvalues of the 
transition matrix Q of the invasion dynamics of 
mating modifiers, defined by (11). 

Let P be the 4×4 matrix defined as P=
1W

WM
Q. 

Thus, if ω is an eigenvalue of P, 
WM

W1 ω is an 

eigenvalue of Q. Let z=(z1,z2,z3,z4)
T be the (right) 

eigenvector of P associated to ω. By definition, z 
and ω must satisfy the system of linear equations 
ωz=Pz, which, by (11), corresponds explicitly to 

 az1+rbz2+(1–r)bz3=ωz1, (A.1) 

 h(1–r)bz2+hrbz3+hcz4=ωz2, (A.2) 

 hcz1+hrbz2+h(1–r)bz3=ωz3, (A.3) 

 (1–r)bz2+rbz3+az4=ωz4. (A.4) 

Summing (A.1) to (A.4) and (A.2) to (A.3) we get 
the two equations 

 z2+z3=
b

a−ω
 (z1+z4) , z2+z3=

hb

hc

−ω
 (z1+z4), 

which are compatible if and only if either 

 
hb

hc

b

a

−ω
=−ω

, (A.5) 

or 

 z2+z3=z1+z4=0. (A.6) 

Condition (A.6) cannot apply to the eigenvector 
associated to the dominant eigenvalue of P since 
such eigenvector must be strictly positive because 
P is irreducible (for c>0). Hence the dominant 
eigenvalue of P must satisfy (A.5). This condition 
is equivalent to the following quadratic equation  
in ω 

 ω2–(a+hb)ω+hb(a–c)=0, (A.7) 

which is the same as (12.2). The two distinct real 
roots of such equation provide two of the eigenval-

ues of P. The largest of these in absolute value, 
which is positive, is the dominant eigenvalue of P. 

If z satisfies (A.6), then (A.1) and (A.3) reduce, 
respectively, to 

 
( ) ( )

2121
21

,
21

z
hc

hbr
zz

a

br
z

ω−−=
ω−

−= , 

which are compatible if and only if  
( ) =

ω−
−
a

br21
 

( )
hc

hbr ω−− 21
. This condition is equivalent to the 

following quadratic equation in ω 

 ω2–[a+hb(1–2r)]ω+hb(1–2r)(a–c)=0, 

which provides the two remaining eigenvalues  
of P. 
 

B) 
 
Let λ be the dominant eigenvalue of the transition 
matrix Q, defined in (11) and discussed in Appen-

dix A. Then, as we know, λ=
WM

W1 η, where η is 

the largest in absolute value of the two real roots of 
the quadratic equation given in (12.2) and in (A.7), 
namely 

 ω2–(a+hb)ω+hb(a–c)=0 , (B.1) 

where the parameters a, b, c and h are defined in 
(11.2) and (10). Under the assumptions of (13), η 
is a function, η=η(υ,υ′), of the strength of assort-
ment in the resident population, υ∈[0,1], and of 
the strength of assortment, υ′∈[0,1], due to a muta-
tion of a mating gene. For υ′–υ=ε≈0, we are inter-
ested in the expansion 

 η=η0+η1ε+o(ε). (B.2) 

In particular, for the case of assortment with no 
cost of mate choice (n=∞), we want to compute 

η1=
( )

υυυ
υ,υη

=′
′∂

′∂
 and to prove that η1>0 is equiva-

lent to (18). 
We know that λ=1 if υ′=υ. Thus, recalling that 

M=1 for n=∞, we immediately have that 
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 η0=η(υ,υ)=
1W

W
. (B.3) 

To determine η1 from (B.1) we will use simple 
perturbation techniques (e.g. Nayfeh, 1981). Thus, 
the first step is to represent the coefficients of (B.1) 
as power series expansions in ε=υ′–υ. It is clear 
from (11.2) that the parameter h is independent of 
υ′. With no cost of mate choice, a case in which 
(9) is true, b is also independent of υ′. In fact, by 
(11.2), recalling that p1=p3 because the resident 
population is at a symmetric equilibrium and that 
θ′21=θ′23, by (10.10), we have 

( ) ( )[ ]=θ′+θ′+θ+θ= 222121222112 22
4

1
ppppb  

 ( ) ( )[ ]=θ′+θ′+θ′+θ+θ= 3232221212221122
4

1
ppppp  

 ( )12
4

1
222112 +θ+θ= pp . 

For analogous reasons we also have that 

( ) =+θ+θ+θ=+ 1
2

1
313221111 pppca  

 ( ) ,
2

1
1 21221 pθ−θ+=  (B.4) 

so that 
( )

υ′∂
+∂ ca

 = 0 and therefore 
υ′∂

∂−=
υ′∂

∂ ca
. 

From these observations it follows that (B.1) can 
be written as 

ω2–(a0+hb+a1ε)ω+hb(a0–c0+2a1ε)+o(ε)=0, (B.5) 

where 

a0=a(υ,υ), c0=c(υ,υ), a1=
( )

υ=υ′υ′∂
υ′υ∂ ,a

. (B.6) 

Since ω=η is a root of (B.5), substituting (B.2) for 
ω in this equation produces the following equa-
tions for η0 and η1 

 ( ) ( ) ,00000
2
0 =−+η+−η cahbhba  (B.7) 

 .
2

2

00

0
11 hba

hb
a

−−η
−η=η  (B.8) 

Of the two roots of (B.7) we have to take the larg-
est in absolute value, which is given by (B.3). With 
this choice for η0, from (B.8) we obtain for η1 

 .
2

2

201

2
11 bWaWW

bWW
a

−−
−=η  (B.8) 

It is clear that a1>0. In fact, by (11.2), we have 

 ( ) =θ′+θ′+θ′
υ′∂
∂=

υ′∂
∂

3112121114

1
ppp

a
 

 ( )131134

1 θ′−θ′
υ′∂
∂= p  

which is positive because, obviously, θ11–θ13 in-
creases with the strength of assortment, υ. 

By taking into account equations (10.1), (10.2), 
(10.5), (10.10), (11.2) and (B.6), and by recalling 
that M=1 and p1=p3, we can easily deduce the fol-
lowing relations 

 2a0p1+bp2=
1

2
W

W
p1 , 2c0p1+bp2=

2W

W
p2, 

which, with simple rearrangements, become, re-
spectively 

 ( ) ,2 21011 bpWaWWp =−  (B.9) 

 ( ) .2 10222 pcWbWWp =−  (B.10) 

These two relations show that the left-hand side of 
each of them is a positive quantity, so that the de-
nominator in the expression for η1 given in (B.8) is 
also positive. Hence, η1 can be written as 

 ( ),2 21 bWWC −′=η  (B.11) 

where C′ is a positive quantity. Moreover, if we 
multiply (B.9) by (B.10) we obtain 

 ( )( ) ,021201 bcWWbWWaWW =−−  

which can be solved for b, giving 
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 .
0101

01

2 cWaWW

aWW

W

W
b

+−
−=  

Note that, again by (B.9), the denominator on the 
right-hand side of this equation is positive. Thus, 
when we substitute this expression for b in (B.11) 
we obtain that 

 ( ) ,100
1

1 



 −+=η ca
W

W
C  

where C is a positive quantity. Hence, using (B.4) 
and (B.6), we conclude, in agreement with (18), 
that 

η1>0 if and only if  

 ( ) ( ) .1
2
1

1 21221
1 >



 θ−θ+=υ∆ p

W

W
 


