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Abstract.—Dobzhansky’s model of epistatic selection assumes that viable genotypes form “clusters” in genotype
space so that populations can evolve from one state to a reproductively isolated state following a “ridge”” of well-fit
genotypes without crossing any deep adaptive valleys. Recently, the importance of Dobzhansky-type models in evo-
lutionary studies has been reemphasized by Gavrilets (1997a) and Gavrilets and Gravner (1997) who argue that the
existence of “‘ridges” of well-fit genotypes connecting reproductively isolated genotypes is actually a general property
of multidimensional adaptive landscapes. Using rigorous techniques and numerical simulations, I analyze clines in
the frequencies of selected and neutral alleles maintained by a balance of migration and Dobzhansky-type epistatic
selection acting on two diallelic loci. I show that Dobzhansky-type epistatic selection can build up a very strong
barrier to neutral gene flow. I describe properties of clines that are indicative of Dobzhansky-type selection.
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Analysis of hybrid zones provides insights into the nature
of species, the strength and mode of natural selection, the
genetic architecture of species differences, and the dynamics
of the speciation process (Endler 1977; Barton and Hewitt
1981, 1985, 1989; Harrison and Rand 1989; Harrison 1990,
1993; Barton and Gale 1993). Many hybrid zones are thought
to be formed following a secondary contact of different pop-
ulations, and to be maintained by a balance between selection
against hybrids and recombinant phenotypes and dispersal
(Barton and Hewitt 1981, 1985, 1989; for alternative expla-
nations see Endler 1977; Moore 1977; Rand and Harrison
1989). Several mathematical models intended to help to un-
derstand complex processes leading to the formation and fate
of such hybrid zones have been proposed. Perhaps the most
simple and basic model is that by Karlin and McGregor
(1972), who considered two diploid populations connected
by migration assuming that fitness is controlled by a single
diallelic locus. In their model, individuals with genotypes aa,
aA, and AA have relative fitnesses (viabilities) 1, 1 — s, and
1, respectively (s > 0). Initially one allele is fixed in the first
population whereas another allele is fixed in the second pop-
ulation. Given that migration rate m is small relative to the
strength of selection (m = m, = s/6, Karlin and McGregor
1972) two populations remain differentiated with alternative
alleles close to fixation in each population.

Selection on some loci can produce clines in their allele
frequencies that will represent a barrier to gene flow and will
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reduce the ability of (neutral) genes to penetrate from one
population to another. The strength of the barrier to neutral
gene flow in Karlin and McGregor’s model was studied by
Spirito et al. (1983) and Bengtsson (1985). Spirito et al.
(1983) have characterized the strength of the barrier using
the rate of convergence of the neutral allele frequency to an
equilibrium value. To characterize the strength of the barrier
Bengtsson (1985) defined a “‘gene flow factor’” (GFF) as the
probability of inclusion of an incoming neutral gene in a
“native” genetic background. A more common measure is
the strength of a genetic barrier between two populations, b,
defined as the inverse of GFF (Barton and Bengtsson 1986).
For the case of a neutral locus unlinked to locus A, Bengts-
son’s (1985) results give

(1a)

For a neutral locus closely linked to locus A with recombi-
nation rate R < 1, Bengtsson’s analysis produces

_ S
T RA - s

For the case of continuous habitat, the form of single-locus
clines has been studied in Bazykin (1969), Barton (1979b),
Christiansen et al. (1995), and Gavrilets (1997b). Moreover,
Barton (1979a) and Pidlek and Barton (1997) have considered
gene flow across a hybrid zone. Several papers report theo-

b (1b)
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FiG. 1.

Dobzhansky model (see text).

retical analyses of hybrid zones maintained by selection on
multiple loci (Bazykin 1972a,b; Barton 1983, 1986; Bengts-
son 1985; Barton and Bengtsson 1986; Barton and Gale 1993;
Baird 1995; Gavrilets and Hastings 1996). The analyses differ
mainly in the assumptions about the form of selection against
hybrids and recombinant phenotypes.

Among different multilocus selection models a class of
Dobzhansky-type epistatic models has become a subject of
_controversy. Dobzhansky’s (1937) original model considers
a two-locus, two-allele population initially monomorphic for
a genotype, say AAbb (Fig. 1). This population is broken up
into two geographically isolated parts. In one part, mutation
and other factors cause substitution of b for B and a local
race AABB is formed. In the other part, there is a substitution
of A for a, giving rise to a local race aabb. It is assumed
that there is no reproductive isolation among genotypes
AAbb, Aabb, and aabb and among genotypes AABB,
AABD, and AAbb, that is, all offspring of matings within
these two groups are viable. In contrast, genotypes AABB
and aabb are considered to be reproductively isolated in the
sense that double heterozygote AaBb is inviable (or has very
low fitness). In this scheme, strong reproductive isolation can
be achieved, even though selection acting during the evo-
lutionary divergence is weak or absent. Dobzhansky-type ep-
istatic models (see Bengtsson and Christiansen 1983; Nei et
al. 1983; Bengtsson 1985; Barton and Bengtsson 1986; Cabot
at al. 1994; Wagner at al. 1994; Orr 1995; Orr and Orr 1996;
Gavrilets and Hastings 1996) assume that viable genotypes
form *‘clusters” in genotype space so that the population can
move from one adaptive peak to another one separated by
an adaptive valley following a “‘ridge” of well-fit genotypes
without crossing any deep adaptive valleys. Populations di-
verge as a consequence of accumulation of different muta-
tions (resulting from randomness of mutation and genetic
drift) and reproductive isolation arises as a side effect of these
accumulating differences between populations.

SERGEY GAVRILETS

Bengtsson (1985) was the first to study the strength of the
barrier to the neutral gene flow in a two-locus, Dobzhansky-
type model. Using some heuristic approximations, Bengtsson
found the gene flow factor for a neutral locus unlinked to the
loci under selection. In the simple case of unlinked loci A
and B, with perfectly viable genotypes along the “‘ridge”’ and
all other genotypes having fitness 1 — s, the strength of the
barrier is given by equation (1a). This implies that if selection
against F, hybrids is strong (i.e., if s is large), the barrier is
strong. This conclusion was, however, revoked by Barton and
Bengtsson (1986) who argued that Bengtsson’s analysis de-
scribed only the initial situation and that persistent migration
between populations would quickly recreate the fitter inter-
mediates along the ridge connecting the two adaptive peaks,
destroying the barrier to gene exchange. Barton and Bengts-
son (1986) presented a study of an epistatic model illustrating
their point. On the other hand, a very short numerical study
by Gavrilets and Hastings (1996) has indicated that Dob-
zhansky-type epistatic selection can build up a rather strong
barrier to gene exchange.

Recently, it has been demonstrated that the existence of
“ridges” of well-fit genotypes connecting reproductively iso-
lated genotypes, which was postulated by Dobzhansky, is
actually a general property of multidimensional adaptive
landscapes (Gavrilets and Gravner 1997). A new metaphor
of “holey”” adaptive landscapes, which places a special em-
phasis on ridges of well-fit genotypes, has been put forward,
and it has been argued that evolution and speciation on mul-
tidimensional adaptive landscapes proceeds according to the
properties of underlying holey adaptive landscapes (Gavrilets
1997a; Gavrilets and Gravner 1997). This reinforces the im-
portance of Dobzhansky-type models in evolutionary studies.

Here I study hybrid zones with Dobzhansky-type epistatic
selection in a systematic way. Using rigorous techniques and
numerical simulations I analyze clines in the frequencies of
selected and neutral alleles maintained by a balance between
migration and selection acting on two diallelic loci. I attempt
to resolve whether Dobzhansky-type selection can produce
a strong barrier to gene flow by examining the effects of
migration rate on the strength of the barrier to gene exchange.
I show that when selection against F; hybrids is weak, the
fit intermediates can rise to high frequency, and isolation is
lost. However, with strong selection, linkage disequilibrium
can build up, and can keep the fit recombinants at low fre-
quency, maintaining the barrier. I describe properties of clines
in Dobzhansky-type models that might be useful in identi-
fying the form of selection against hybrids and recombinants
acting in natural populations.

THE MODEL

I consider a population with discrete generations under
viability selection acting on two autosomal loci with alleles
A,a and B,b, respectively. Let x;, x,, x5, and x, be the fre-
quencies of gametes AB, Ab, aB, and ab, respectively, and
wj be the fitness (i.e., the probability of survival from zygote
stage to maturity) of a zygote formed from gametes j and k.
The gamete frequencies after selection and recombination in
an isolated randomly mating population are described by the
standard equations
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Here r is the rate of recombination, D = x;x4, — Xx,x; is the
standard linkage disequilibrium, w; = 2; wx; is the induced
fitness of gamete i, and W = X;; w;xx; is the mean fitness of
the population. In equation (2), the sign is minus for i = 1
and 4 and plus for i = 2 and 3.

Selection.—I assume that fitnesses of two-locus genotypes
are given by matrix

BB Bb bb
AA 1 1-B 1 -
Aa l -« 1 -5 1-B 3)
aa 1 — oy l -« 1

where a, oy, B, By, and s are positive parameters that satisfy
a = aj, B = B, a = B, s. In general, fitness matrix (3)
describes an adaptive landscape with two equal peaks (at
genotypes AABB and aabb) separated by an adaptive valley.
Parameter s characterizes the degree of reproductive isolation
between two populations at different adaptive peaks: the larg-
er s is, the smaller is the fitness of F; hybrids, and the stronger
is reproductive isolation. Dobzhansky-type epistatic models
assume that strong reproductive isolation takes place simul-
taneously with the existence of a chain of almost perfectly
viable genotypes connecting two ‘‘peaks.”” Within the frame-
work of the fitness matrix (3), these assumptions will be
incorporated by assuming that o and «; are much smaller
than s, B and B;, which are not small.

Fitness model (3) includes several previously studied mod-
els as partial cases. If « = a; = 0, one has a Dobzhansky-
type model considered by Bengtsson and Christiansen (1983)
and Bengtsson (1985). If « = B, a; = B; = s, one has a
model with fitnesses depending on the proportion of foreign
alleles, which was analyzed by Barton and Bengtsson (1986)
and Barton and Gale (1993). Gavrilets and Hastings (1996)
have considered a Dobzhansky-type model corresponding to
the case with s = 1, o; = 2, B; = 2.

Spatial Structure.—1I shall consider what happens after sec-
ondary contact of two populations at different adaptive peaks.
I assume that two very large populations contact via a chain
of smaller subpopulations. To model this situation, I use the
stepping-stone cline model introduced by Feldman and Chris-
tiansen (1975). There are 2/ subpopulations of equal size
arrayed along a line connecting two main subpopulations with
constant genotype frequencies (Fig. 2). The migration rate
(i.e., the proportion of adults replaced by immigrants) be-
tween subpopulations of the same population is mg, whereas
the migration rate between ‘‘peripheral’’ subpopulations of
different populations is m. I will assume that one of two main
subpopulations, say that at left, consists of individuals with
genotype aabb, whereas the second main subpopulation con-
sists of individuals with genotype AABB. Initially all [ sub-
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populations on the left have only aabb individuals whereas
all / subpopulations on the right have only AABB individuals.

Let z; be the frequency of a gamete in the jth subpopulation
at the beginning of a generation, j = 1, 2, . . . 2l. Gamete
frequency z;” after selection and recombination is given by
an equation in the form of (2). The gamete frequencies after
adult migration are

= (1= m = m)i + mzhy + moziy, @)
(4b)

J# L1+ 1, (4o)

Zl = (1 — m — my)zjy + mz) + myzg,,,
zj = (1 = 2mg)zj + my(zj_y + zj11),

with j = 0 and j = 2] + 1 corresponding to main subpo-
pulations on the left and on the right, respectively. The case
with my = 0 and [ = 1 describes direct contact of two pop-
ulations.

ANALYTICAL RESULTS

I start by considering a simple case of / = 1, that is, when
each population consists of a main subpopulation and a pe-
ripheral subpopulation with secondary contact taking place
between the peripheral subpopulations. This case can also be
considered as an approximation for a larger number of sub-
populations on the time scale such that subpopulations away
from the zone of contact are not yet affected by gene flow
from other populations. Let x; through x, and X, through X,
be the frequencies of the four gametes in the first and second
peripheral subpopulations, respectively. Initially (i.e., before
the contact between peripheral subpopulations) only gamete
4 (gamete ab) is present in the first subpopulation and only
gamete 1 (gamete AB) is present in the second subpopulation.
For the first peripheral subpopulation gamete 4 is ‘‘native,”
whereas gametes 1, 2, and 3 are “‘foreign.”” For the second
peripheral subpopulation gamete 1 is ‘“‘native,” whereas ga-
metes 2, 3, and 4 are ‘“foreign.”” After individuals start mi-
grating between peripheral subpopulations bringing genes
foreign to each subpopulation’s genetic background, an equi-
librium cline in gamete frequencies will be formed. I consider
different characteristics of this cline, including its ability to
prevent neutral gene flow between populations. To gain some
insight into these questions, I shall use a weak migration
approximation and regular perturbations techniques, which
were introduced into selection-migration studies by Svirezh-
ev (1968) and Karlin and McGregor (1972) and have proved
very useful since then.

Cline in Selected Loci

Cline Properties.—Let us assume that there is some mi-
gration between main subpopulations and their peripheral
subpopulations (m, # 0) and that the migration rate between
peripheral subpopulations, m, increases from zero to some
small value. Exact values of equilibrium gamete frequencies
cannot be found; therefore one is forced to use approxima-
tions. Standard regular perturbation techniques (e.g., Holmes
1995) produce the first-order approximations for the equilib-
rium gamete frequencies given in the appendix. These ap-
proximations show that any increase in selection (increase
in o, B, 5) or decrease in migration between populations m
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always results in decreasing the frequencies of *‘foreign”
gametes. This is what is expected from biological consid-
erations. An increase in recombination rate r decreases the
frequency of the “‘foreign”” gamete complementary to the
“native’” gamete, but increases the frequencies of recombi-
nant ‘“‘foreign” gametes 2 and 3.

Let us assume that any deviation from an adaptive peak
results in a substantial reduction in fitness (a, B, s > m). In
this case, the equilibrium gamete frequencies are

m
*=X*= -
i YT s+ -9 (52)
1-—5r m
F=Xf=—T—— 5b
2 : s+ (1 —-9rp (5b)
1-—95r m
*=X*= >
s ? s+ —-9ra (50)
xf=X¥=1-xF—xf— xt. (5d)

Frequencies of all foreign gametes are very small and have
the same order (equal to the ratio of the migration rate and
the strength of selection). In the case of Dobzhansky-type
epistatic selection where strong selection against F, hybrids
takes place simultaneously with existence of a chain of (al-
most) perfectly viable genotypes connecting two adaptive
peaks (B, s > m, my > «) the equilibrium frequency of
gamete aB becomes

1—-—95r m

* — —
s+ (1 — s)rmg

= X5 =

(6)

The equilibrium frequencies of other foreign gametes are still
given by equations (5a—d) and are small, whereas the fre-
quency of gamete aB in both peripheral subpopulations is
much bigger. Strictly speaking, the first-order approximations
(5-6) are feasible as long as m remains much smaller than
my. It is often the case, however, that first order analysis gives
approximations reasonably good for broader parameter val-
ues. Equation (6) suggests that as the rate of migration be-
tween populations m increases to the level of that between
main and peripheral subpopulations m, the frequency of ga-
mete aB increases dramatically from a very low level (order
m/s) to a significant level (order the ratio r[1 — s)/[s + r(1
— 5)]). Numerical simulations have shown that with suffi-
ciently large migration, the frequency of gamete aB reaches
that of the ‘‘native” gametes and three genotypes aabb,
aaBb, and aaBB become common in the first peripheral sub-
population, whereas three genotypes AABB, AABb, and
AAbb become common in the second peripheral subpopu-
lation.

Let p; and p, (P, and P,) be the frequencies of allele A
and B in the first (second) peripheral population. Since p, =
Xy t x5 and p, = x3, in the first subpopulation, the frequency
of foreign allele A is very small but the frequency of foreign
allele B is significant (and is approximately given by the
right-hand side of eq. [6]). In a similar way, in the second
peripheral subpopulation the frequency of the foreign allele
a is significant. Using equations (5-6) one can show that
equilibrium values of p; and P; satisfy

SERGEY GAVRILETS

pF=1-Pr, i=12, (7a)
PY¥ — p¥ = P¥ — p¥, (7b)
3 > pf, P} > PY. (7o)

Equation (7a) is a consequence of the symmetry assumption
incorporated in fitness matrix (3). Equation (7b) shows that
changes between peripheral subpopulations in allele fre-
quencies in the first and second loci are the same. In the case
of continuous habitat, the width of a cline, w, is usually
defined as the total change in gene frequency divided by the
maximum gradient (Endler 1977). The discrete space analog
of w in the model under consideration is one (the total change)
divided by P; — p; (the maximum change). Thus, equation
(7b) implies that the width of the clines in allele frequencies
in the first and second loci is the same. Equation (7c) tells
us these clines are disjointed. Several other potentially im-
portant observations can be made. Populations at the zone
of contact (peripheral subpopulations in the model under con-
sideration) have genotypes that are absent (or are at very low
frequencies) in main subpopulations and that are different
from F, hybrids resulting from crosses between individuals
from different main subpopulations. These subpopulations
have large genetic variability in the loci under selection.
However, this variability does not transform into large vari-
ability in fitness, and peripheral subpopulations have large
mean fitness: w = 1 — 2m. At the same time, reproductive
isolation between two main subpopulations (as measured by
the loss in F; hybrid fitness wg, = 1 — ) can be very large.

Cline Stability.—Given that the rate of migration between
main and peripheral subpopulations, m, is not zero, the cline
in the gamete frequencies approximated by equations (5-6)
is stable for any migration rate m and any adaptive landscape
of form (3). This is not so if my = 0, that is, if there is direct
contact of two populations. To see this, let us consider the
maximum eigenvalue \,,,, of the stability matrix of the dy-
namic system (2—4) at equilibrium (5-6). In general, the equi-
librium is locally stable if —1 < A, < 1. Let a < B, s.
Using standard regular perturbation methods, one finds that

(&)

where A depends on the parameters of the model. Increasing
m should decrease the domain of stability and, thus, A, should
be positive. As o — 0, the domain of stability shrinks. If
both my, = 0 and a = 0, approximation (8) predicts that \,,,,
> 1 for any nonzero migration rate m. This means that in
Dobzhansky-type models with @ = 0 and m; = O the non-
uniform solution is unstable for any m-values. Bengtsson’s
(1985) analysis of the strength of genetic barrier in Dob-
zhansky-type model used these two assumptions, and thus
Barton and Bengtsson’s (1986) conclusion about collapse of
the genetic barrier in Dobzhansky’s model is correct. How-
ever, as I show below, Bengtsson’s formulae are valid in a
slightly different setup.

Anax = (1 = mo)(1 — ) + m\,,

Neutral Gene Flow across The Hybrid Zone

Unless the loci under selection are identified, allele fre-
quencies p; and p, cannot be measured. However, what can
usually be found is a neutral marker locus (or loci) at which



DOBZHANSKY-TYPE HYBRID ZONES

the populations away from the hybrid zone have clearly dif-
ferent frequencies. Information on clines in neutral loci ob-
served in natural populations is abundant. To use this infor-
mation in making biological conclusions, it is important to
understand how neutral allele frequencies are expected to
change across hybrid zones in different models.

Let us consider a third “‘neutral”’ locus M with alleles m
and M. Let # and U be the frequency of allele M in the first
and second peripheral subpopulations, respectively. I take the
special order of loci to be MAB. As before, let r be the
recombination rate between the loci under selection A and
B, and R be the recombination rate between M and A, and
further assume that recombination occurs independently be-
tween the first, second, and third positions. Let the neutral
allele M initially be absent in the first population, but fixed
in the second population (i.e., initially # = 0, U = 1). After
individuals begin migrating between the populations, the for-
eign neutral alleles start to appear in each subpopulation. In
the case of a direct contact between populations (i.e., if my
= 0), the difference in the frequency of a neutral allele be-
tween populations is expected to gradually decay. In the step-
ping-stone cline model with m, # 0, a stable cline in the
neutral allele frequency is expected to be formed. With no
selection (i.e., if all parameters of the fitness matrix [3] are
equal to zero), the equilibrium value of the neutral allele
frequency in the first subpopulation is u,, = m/(2m + mg)
reducing to u,, = m/my if m < my and to u,, = ¥ if m =
my. In the second subpopulation, U,, = 1 — u,,. Selection
will result in deviation of equilibrium values of ¥ and U from
u,, and U,,, respectively.

Let y,, ., y3, and y, be the frequencies of the gametes
MAB, MaB, MBa, and Mab in the first peripheral subpop-
ulation (where initially gamete mab is fixed). These fre-
quencies together with x;, x,, x3, and x, values completely
characterize the state of the first subpopulation. Obviously,
u = 3 y;. The appendix gives first-order approximations for
y; as well as relevant values for the second subpopulation
found using regular perturbation techniques. Under the as-
sumption that m and m, are small and about the same order,
equilibrium frequencies of gametes MAB, MAb, and MaB
are much smaller than the equilibrium frequency of gamete
Mab (i.e., y¥, ¥¥, y¥ < y¥). In this case, the frequency of a
neutral allele M that is unlinked to the loci under selection
(R = %) in the first peripheral subpopulation is approximately
given by

w1 1-s
myl+s+r(l—oy)

x (1 P Sl el
—r+tr r .
1+ a 1+B
For Dobzhansky-type epistatic selection with @ < 1 and
unlinked loci under selection (r = %), this simplifies to

o mA=-93+B
my 3+ s)(1 + B)

For tightly linked selected loci (r < 1/2), (9a) reduces to

(%9a)

(9b)

ml-—s
myl + s

u* =

(%)
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The latter equation results also from (9b) if § = s. If R =
%, the frequency of M in the second peripheral subpopulation
U* =1 — uw*. Approximations (9a—c) show that if selection
against F; hybrids is strong (s is large), the foreign neutral
allele does not penetrate the barrier (#* is small) even it is
unlinked to the loci under selection. Clines for the frequencies
of different neutral alleles that are unlinked to the loci under
selection coincides (and are characterized by eqs. [9a-c]).

On the other hand, if the neutral locus is closely linked to
A (ie., if R<K V),

m 1— 1-8
—R——— (1 + r—|.
my s+r(1—s)<1 4 B )
If the loci under selection are unlinked (i.e., if r = 1/2),
m (= 51+ B)
my 1+ s)B

If all three loci are tightly linked (i.e., if r < 1/2), equation
(10a) simplifies to

u* =~

(10a)

u* =~

(10b)

(10¢)

If the neutral allele is linked to a locus under selection (R <
%), the equilibrium cline in the neutral allele frequency is
not symmetric (U* # 1 — u*). Approximations (10a—c) show
that if selection against F, hybrids is strong (s is large) or/and
the neutral locus is closely linked to a selected locus (R <
14), the foreign neutral allele does not penetrate the barrier
(u* is small). The equilibrium frequency of a neutral allele
depends on the degree of its linkage to a selected locus. Clines
in the frequencies of selected alleles are disjointed. Thus,
clines in the frequencies of different neutral alleles that are
linked to the loci under selection are expected to be disjointed
as well.

The results about the equilibrium values of the neutral
allele frequency can be used to characterize the strength of
the barrier to neutral gene flow across the hybrid zone. There
are at least two approaches. First, one can introduce a measure
characterizing the rate of convergence to the equilibrium val-
ues (e.g., based on eigenvalues; see Spirito et al. 1983). One
can also introduce a measure based on the deviation of these
equilibrium values from those expected with no selection.
The latter approach is easier and is adapted here. I define the
strength of the barrier to the flow of neutral genes from pe-
ripheral subpopulation 1 to peripheral subpopulation 2, b,,
and from peripheral subpopulation 2 to peripheral subpop-
ulation 1, b_, as

b, = (U* — u®)/u*, b_ = (U* — u*)/(1 — U*). (11)

This definition is a discrete-space analog of that for popu-
lations in continuous habitat (Nagylaki 1976; Barton 1979a).
The barrier strength, b, is the difference in the neutral allele
frequency between two peripheral subpopulations divided by
the difference in the neutral allele frequency between a pe-
ripheral subpopulation and its main subpopulation. It can be
thought of as the number of subpopulations one should put
between two peripheral subpopulations that would present
an equivalent obstacle to the flow of a neutral allele (see Figs.
Ic and 1d in Barton and Bengtsson 1986). With no selection,
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u* = ¥, U*¥ = %4, and thus, b = 1. If the frequencies of
foreign neutral alleles are small (i.e., if u* < 1,1 — U* <
1), then equation (11) simplifies to

b, = 1/u*, b_ = 1/(1 — U*). (12)

Parameter configuration leading to equations (9b,c) have been
considered by Bengtsson (1985). If the frequencies of foreign
neutral alleles are small, the strength of the barrier to the
gene flow is given by equation (12) and is different from that
found by Bengtsson by a factor m/my,.

NUMERICAL RESULTS

The methods used in the previous section do not allow one
to evaluate the precision of analytical approximations when
migration rates between (m) and within (m,) populations are
the same. In this section, I present numerical results illus-
trating properties of hybrid zones with Dobzhansky-type ep-
istatic selection for the case my = m.

Figure 3 shows how the equilibrium frequencies of selected
alleles p; and p, and of the neutral allele u depend on the
migration rate in three different selection models. Note that
with extremely small migration all three allele frequencies
should be about zero. With no selection, all allele frequencies
should be equal to %. Figures 3a,b correspond to the follow-
ing fitness matrix

1.0 99 .98
99 98 .99 (13)
98 99 1.0

In this model any ‘“‘path’ from one adaptive peak to another
involves the same reduction in fitness. This model will serve
as a reference point for two Dobzhansky-type models con-
sidered below. Figures 3a,b show that the selected allele fre-
quencies are equal and increase from zero (for small m) to
a level close to that for the case with no selection (as m is
about 0.01). Unless the migration rates are extremely small,
the neutral allele frequency is close to %. The barrier to
neutral gene flow is practically absent. Close linkage between
selected loci or between the neutral and a selected loci does
not change this conclusion.
Figures 3c,d correspond to fitness matrix

1.0 .50 .50
99 50 .50 (14)
98 99 1.0

In this model, there is a ridge of almost perfectly viable
genotypes. Fitness of other genotypes is half of that of ge-
notypes at adaptive peaks. Reproductive isolation is moderate
(half of F; hybrids are inviable). Figures 3e,f correspond to
the fitness matrix

1.0 .10 .10
99 .10 .10 (15)
98 99 1.0

Here again there is a ridge of almost perfectly viable geno-
types. Fitness of other genotypes is %, of that of genotypes
at adaptive peaks. Reproductive isolation is strong (only one
of 10 F; hybrids is viable).
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FiG. 3. Equilibrium allele frequencies p;, p, (solid lines) and u

(dashed lines) in the first peripheral subpopulation as functions of
migration rate. In (a), (c), and (e) the loci under selection are un-
linked (r = %). In (b), (d), and (f) the loci under selection are
closely linked (» = 0.05). Of the two solid lines, the upper gives
p; and the lower gives p,. In (a) and (b) the solid lines coinside.
Of the two dashed lines, the upper gives u for R = % and the lower
gives u for R = 0.05. See text for more details.
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Fic. 4. Equilibrium clines in allele frequencies p,, p,, and u in a
stepping-stone cline model with 10 subpopulations. Figures (a), (b)
and (c), (d) corresponds to fitness matrices (14) and (15), respec-
tively. In figures (a) and (c) the loci under selection are unlinked
(r = ¥). In figures (b) and (d) the loci under selection are closely
linked (r = 0.05). Of the two solid lines, the upper gives p; and
the lower gives p,. The long-dashed line gives u for R = % and
the short-dashed line gives u for R = 0.05. See text for more details.

In Figures 3c—f, the allele frequency p; is small throughout
the considered range of m. The allele frequency p, increases
from very low levels to a significant level. The neutral allele
frequency u increases with m. The equilibrium allele fre-
quencies are different between the three models. Thus, the
barrier to gene exchange depends not only on fitnesses of
intermediates along the ridge connecting the two adaptive
peaks, which are the same in these models, but on fitnesses
of F; hybrids as well (cf. Barton and Bengtsson 1986). Both
linkage between neutral and selected loci and linkage be-
tween selected loci reduce equilibrium values of u. With
strong linkage (Figs. 3c,d) or strong selection (Figs. 3d,e) u
is small, and hence, the genetic barrier is strong. For example,
in model (15) with m = 0.005 and unlinked loci, u* = .08
(see Fig. 3e) giving b = 12. If all three loci are closely linked,
u* =~ 02 (see Fig. 3f) giving b = 50.

A different illustration of the same conclusions is given
in Figure 4. This figure shows equilibrium values of p;, p,,
and u in a system of 10 subpopulations. Here populations 0

1033

and 11 correspond to main subpopulations with constant ge-
notype frequencies. Note that with extremely small migra-
tion, all allele frequencies should be about zero in subpo-
pulations 1-5 and about one in subpopulations 6-10. With
no selection, all three allele frequencies should increase lin-
early from zero in the left main subpopulation to one in the
right main subpopulation with increment 1/(2/ + 1) (Feldman
and Christiansen 1975, eq. 30), which is 1/11 with [ = 5.
Figures 4a,b and 4c,d corresponds to fitness matrices (14)
and (15), respectively. The migration rate m = 0.05 was taken
at the middle of the range considered in Figure 3. These
Figures clearly illustrate that clines in selected allele fre-
quencies can be disjointed.

DiscussioN

This paper presents a systematic study of properties of
hybrid zones maintained by a balance of migration and Dob-
zhansky-type epistatic selection. Previous theoretical studies
of such hybrid zones have been limited in a number of ways.
Bengtsson’s (1985) pioneering analysis used heuristic ap-
proximations for the case of an unlinked neutral locus and a
limited selection scheme. The cline analyzed by him was
actually unstable (Barton and Bengtsson 1986). Barton and
Bengtsson (1986) considered a specific Dobzhansky-type
model assuming very weak selection and tight linkage. No
attempt had been made in either paper to check the validity
of approximations used. Gavrilets and Hastings’s (1996) nu-
merical study of the strong selection case was also very lim-
ited.

Here I used rigorous analysis to consider a more general
selection scheme and a linked or unlinked neutral marker
locus. I have checked analytical approximations against nu-
merical simulations specifying the domain of applicability of
the former. I have shown that the clines in the frequencies
of selected alleles resulting from Dobzhansky-type epistatic
selection represent a barrier to neutral gene flow. The strength
of the barrier to gene exchange depends on the migration
rate. With relatively large migration, the barrier to gene ex-
change depends mainly on fitnesses of intermediates along
the ridge connecting the two adaptive peaks, and is not im-
pressive. However, if migration rates are small, the barrier
to gene exchange depends mainly on fitnesses of F; hybrids.
If selection against F; hybrids is strong, linkage disequilib-
rium can build up and can keep the fit recombinants at low
frequency, thus maintaining a very strong barrier. I believe
these findings have resolved the controversy about the
strength of the barrier to neutral gene flow in Dobzhansky-
type models discussed in the introduction.

My results show that with strong Dobzhansky-type epi-
static selection and low rates of migration, the following
properties of hybrid zones should be expected. Reproductive
isolation between allopatric populations on opposite sides of
the hybrid zone (measured by the decrease in the fitness of
F, hybrids) will increase with distance between these pop-
ulations. F; hybrids between individuals from allopatric pop-
ulations on opposite sides of the hybrid zone will have low
fitness. These F; hybrids will have genotypes that differ from
hybrid genotypes common in the center of the hybrid zone,
which will have high fitness. In general, clines in the fre-
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quencies of neutral marker alleles linked to selected loci will
be disjointed and unsymmetric. Concordant clines are ex-
pected for neutral alleles unlinked to selected loci. There have
been many examples of hybrid zones with apparently dis-
cordant clines and apparently well-fitted recombinant geno-
types present (e.g., Barton and Hewitt 1981, 1985; Harrison
1990; Bert and Arnold 1995; Nurnberger et al. 1995). A
grasshopper hybrid zone studied by Virdee and Hewitt (1994)
is especially interesting in this regard. Here crosses between
the two pure taxa (Chorthippus parallelus parallelus and
Chorthippus parallelus erythropus) result in sterile male off-
spring, whereas no such dysfunction has been detected in
hybrid males collected through the center of the hybrid zone.
Crosses have revealed noncoincident clines for dysfunction
near the center of the hybrid zone.

The properties of hybrid zones maintained by balance of
migration and Dobzhansky-type epistatic selection are dif-
ferent from those formed when adaptive peaks are isolated.
Under this kind of epistasis any deviation from a ‘‘coad-
apted’’ combination of genes results in a (significant) reduc-
tion in fitness—there is no conditionally neutral substitutions.
A major difference between the two types of hybrid zones
should be in the distribution and fitnesses of genotypes in
the center of the hybrid zone. If adaptive peaks are isolated,
in the center of the hybrid zones beside the high-fitness pa-
rental forms, one should observe mainly low-fitness hybrids.
Moreover, one expects concordant clines in neutral allele
frequencies (Barton 1983, 1986; Nurnberger et al. 1995).

Detailed studies of the distribution and fitnesses of ge-
notypes in the hybrid zone compared with those in crosses
between distant populations as well as studies of the form
and location of clines in different allele frequencies should
be helpful in deducing the mechanisms responsible for hybrid
zone formation and fate.
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APPENDIX

With two alleles at each of the three loci, there are eight different
gametes. The vector of eight gamete frequencies characterizes the
state of a subpopulation. Equations describing local dynamics for
two selected and one neutral locus are given in Karlin and McGregor
(1974). The dynamics of the system with two peripheral subpo-
pulations are described by 14 difference equations. With no mi-
gration between peripheral subpopulations (i.e., if m = 0), the dy-
namical system describing the model under consideration has a
locally stable equilibrium with gametes mab and MAB fixed in the
first and second peripheral subpopulation, respectively. The idea of
regular perturbation techniques (e.g., Holmes 1995) is to approx-
imate equilibrium values, eigenvalues, and other characteristics of
the full system (with m # 0) as small deviations from those of the
simplified system (with m = 0). Using these techniques gives the
following first-order approximations for the frequencies of gametes
AB, Ab, aB, and ab in the first peripheral subpopulation

m

T o — o = R
_A-md -

T T (A1
_d-—m)d -

x;;k B my + 0((1 - mo) ;ky (AIC)

xF=1-—xF— x¥ — xt. (Ald)

The frequencies of these gametes in the second subpopulation are
Xt = xf, X¥ = x¥, X§f = x§, X} = x¥. Assuming my < «, B one
gets equations (5a—d). Assuming o < my < B, one gets equation
(6).

One finds the following first-order approximations for the fre-
quencies of gametes MAB, MAb, MaB, and Mab in the first pe-
ripheral subpopulation

m
T T @ — BA - T = (A2a)
* — A —my)d - Ryr(l —s5) A%b
PIT A - moa - pa -t (A2b)
_ (1 — mg)Rr(1 — )
B Tl — R~ = (= 2R = (A%
moy¥ = (1 — mp)R1 — N — s)yf + (1 — my)RA — B)y¥
+ (1 — me)[R(I — o) + (1 — 2R)r(1 — 9y} (A2d)

If my < 1 and R = 1/2, the latter system of equations simplifies to

2m

2= -nd - A3

W=
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_r(l—v) m

BETTR I-a-na= (A3b)
_r(l—s) m

B e s a i (A3c)
m 1-s - l-a 1-8
y:‘k_moz—u—r)(l—s)(l '+r1+a+'1+3)' (a3d)

Let Y}, Y5, Y3, and Y, be the frequencies of gametes mAB, mAb,
maB, and mab in the second peripheral subpopulation. Using reg-
ular perturbation techniques, one finds the following first-order ap-
proximations for the equilibrium values

Yr=st, (Ada)
_ (1 — mg)Rr(l — )
Tl = (- B+ A~ 2oRA = A4
_ (1 —my)RA — N —s)
Y%k - 1 — (1 — m())(] — r)(] _ a)y’lkv (A4C)
moY$ = (1 — mo)(1 — Rr(l — s)YF
+[r(1 = B) + (1 -2PR(A - 9IYF + r(1 — Y. (Add)

Figure Al demonstrates that the first-order approximations (Al-
A4) predict the numerically found equilibrium allele frequencies
reasonably well.
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Fic. A1. Comparison of the equilibrium allele frequencies p;, p,,
and u as functions of migration rate predicted by the first-order
analysis and observed in numerical simulations. Of the two solid
lines, the upper gives analytical approximation for p; and the lower
gives analytical approximation for p,. The long-dashed line gives
analytical approximation for u. Squares and circles denote numer-
ically found equilibrium values of the frequencies of selected and
neutral alleles, respectively. See text for more details.



