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Bazykin (1969) found the form of a single locus cline
arising from viability selection against heterozygotes when
two populations, initially fixed for alternative alleles, come
into contact in a continuous, one-dimensional habitat. Here
I have generalized Bazykin’s results for the case of post-
mating reproductive isolation in the form of fertility selection
as well as premating reproductive isolation.

Analysis of natural zones of hybridization has become a
very popular field of research in recent years. This analysis
provides insights into the nature of species, the development
of barriers to gene exchange, the strength and mode of natural
selection, the number of genes involved, and the dynamics
of the speciation process (Endler 1977; Barton and Hewitt
1981, 1985, 1989; Harrison and Rand, 1989; Harrison 1990,
1993; Barton and Gale 1993). Many hybrid zones are thought
to be maintained by a balance between selection and dis-
persal. Selection could act in many different ways, of which
a very common one is selection against hybrids, recombi-
nants, and rare phenotypes (Barton and Hewitt 1981, 1985,
1989; Barton and Gale 1993). A classical model for a hybrid
zone in a one-dimensional, continuous habitat arising from
selection against heterozygotes at a single locus was proposed
and solved by Bazykin (1969). Mallet and Barton (1989) have
shown that Bazykin’s cline describes hybrid zones arising in
a simple model of selection against rare phenotypes. Further
studies (e.g., Slatkin 1973, 1985; Nagylaki 1975, 1976, 1994;
Barton 1979a,b, 1983, 1986; Barton and Begtsson 1986; Mal-
let and Barton 1989; Barton and Gale 1993) of more complex
models have advanced the understanding of hybrid zones in
many directions. The purpose of this note is to generalize
Bazykin’s results for the case of fertility selection and pre-
mating reproductive isolation. These are very common types
of reproductive isolation mechanisms which, however, were
left outside the scope of recent developments in the hybrid
zone theory. At the end of this note, I will show that single
locus clines arising from fertility and viability selection
against heterozygotes also describe hybrid zones arising in
some models of selection against rare phenotypes.

SYMMETRIC VIABILITY SELECTION AGAINST HETEROZYGOTES

Consider an autosomal locus with two alleles A and a.
Suppose homozygotes have equal viability, while heterozy-
gotes have lower viability than homozygotes. One can assign
viabilities (i.e., probabilities of survival from zygote stage
to maturity) 1, 1 — s, and 1 to genotypes AA, Aa, and aa,
respectively. If selection against heterozygotes is weak (0 <
s < 1), the dynamics of the frequency of allele A, p, in a

single randomly mating population are described by a dif-
ferential equation

dp
4 Pa® ~ 9. 1)
where ¢ = 1 — p is the frequency of allele a. Equation (1)
has two stable monomorphic equilibria and an unstable poly-
morphic equilibrium at p = %. The population evolves to
fixation of allele A (or a) if initially p > g (or p < q). Consider
now a population occupying a continuous, one-dimensional
uniform habitat. Assuming that dispersal is equally likely in
both directions, the dynamics of p(x, ), the frequency of allele
A at time ¢ at spatial location x, can be described by

9, 0292

T = E e~ a), @
where o2 is the variance in distance between parent and off-
spring (Bazykin 1969).

When two geographically disjoint populations, one fixed
for allele A and another fixed for allele a, come into contact,
a narrow zone where hybrids are produced arises. The re-
sulting cline in allele frequencies is given by the equilibrium
solution of (2)

}, 3)

1
p(x) = 5{1 + tanh{ /ﬁ(x - xp)

where x, is the (arbitrary) center of the cline at which p =
% (Bazykin 1969). The width of the hybrid zone can be
characterized as the inverse of the gradient of p at the center
of the cline, which for cline (3) is

w = 4V a?/2s (4a)

(Barton 1979b). In this model, the difference in mean fitness
between populations at the center and the edge of the cline
is s* = §/2. Using s*, the width of the hybrid zone can
alternatively be represented as

w = 20/Vs* (4b)
(Barton and Gale 1993). As selection increases and dispersal
decreases, the hybrid zone narrows. Given that two of the
three variables w, o2, and s* are known, equations (4) allows
one to predict a third variable. Besides cline width, cline
shape can also be used in analyzing hybrid zone. On a logit
scale (i.e., using z = In(p/q) instead of p), the cline given by
(3) follows a straight line with slope

dz/ox = 4lw (5)
(Barton and Gale 1993). Both (4) and (5) have been widely
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used in analyzing natural hybrid zones (Barton and Hewitt
1985; Barton and Gale 1993). The equations given above are
based on several simplifying assumptions (weak and sym-
metric selection, uniform environment, no density effects,
etc.). A number of these assumptions have been relaxed (e.g.,
Slatkin 1973, 1985; Nagylaki 1975, 1976, 1996; Barton
1979b; Christiansen et al. 1995). Another crucial assumption
is that heterozygotes have reduced probability of survival
from zygote to maturity (i.e., selection against hybrids is in
the form of viability selection). Reduced viability of hybrids
is only one of several possible manifestations of hybrid in-
feriority observed in nature, and is not necessarily the most
common (see Table 1 in Barton and Hewitt 1985; Table 2 in
Harrison 1990). In many cases, hybrids and recombinants are
equally viable as individuals from parent populations, but
have reduced (or zero) fertility. In some cases, hybrids are
even more viable than individuals from parent populations
(the phenomenon known as heterosis). Sometimes hybrids
are perfectly viable and fertile, but their formation in natural
populations is prevented by some premating isolating mech-
anisms (Harrison 1990, 1993). The viability selection model
leading to hybrid zone description (egs. 3-5) is obviously
not appropriate in these cases. A model including both via-
bility and fertility differences is described in the next section.

SYMMETRIC VIABILITY AND FERTILITY SELECTION
AGAINST HETEROZYGOTES

Fertility selection models are known for their complex dy-
namic behavior (classical papers: Owen 1953; Bodmer 1965;
Hadeler and Liberman 1975; for more recent results: Lib-
erman and Feldman 1985; Holsinger et al. 1986; Koth and
Kemler 1986; Nagylaki 1987; Twomey and Feldman 1990;
Lessard 1993, 1994). For example, a single-locus population
can have two different stable polymorphic equilibria simul-
taneously (Owen 1953; Bodmer 1965) and can even evolve
to a stable limit cycle (Hadeler and Liberman 1975; Koth
and Kemler 1986). In general, under fertility selection the
genotype frequencies are not at Hardy-Weinberg proportions.

Consider a single, randomly mating population with non-
overlapping generations. Let x, y, and z be the frequencies
of genotypes AA, Aa, and aa at a certain generation, and v;
be (relative) viabilities of the three genotypes (i = 1, 2, 3
corresponding to genotypes AA, Aa, and aa, respectively).
Fertility differences can be incorporated into the modeling
framework by assigning different fertilities F;; to matings
between males with genotype i and females with genotype .
Let f;; = (F;; + F;;)/2 be the average of two fertilities of two
reciprocal matings involving genotypes i and j. Note that f;;
= f;; for all i,j. Then in the next generation

bx' = vi(f11x% + fraxy + 14fyy?), (62)
&y = va(foxy + 2fisxz + fayz + 12fy%), (6b)
bz' = v3(f332% + fazy + VA frny?), (6¢)

where ¢ is a normalizing factor such as x’ + y' + 7' =1
(Bodmer 1965). If f; = ff; for all i,j (i.e., if fertilities are
multiplicative), the model reduces to the standard viability
selection model (Bodmer 1965).
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I will assume that relative viabilities are 1, 1 — s, and 1
and that the matrix of relative fertilities f; has the form

1 l—a 1-»
l—-a 1-—¢c 1—-al. )
1—-b 1-a 1

The latter is a symmetric fertility model introduced by Had-
eler and Liberman (1975). It assumes that fertilities of mat-
ings between similar homozygotes are the same and nor-
malized to be 1, that fertilities of matings between a F; hybrid
and either homozygote is 1 — g, that fertilities of matings
between different homozygotes is 1 — b, and that fertility of
hybrid-hybrid matings is 1 — ¢. I will assume that differences
in both viabilities and fertilities are small, that is, that s, a,
b, ¢ < 1 (weak selection approximation). In this case, de-
viation of zygote frequencies from Hardy-Weinberg propor-
tions can be neglected (Nagylaki 1987) and the dynamics of
the frequency of allele A (p = x + y/2) can be described by
a differential equation

d,
L= paw — a4 + Bpg), @®
where
A=s+a, B =0b+ 2¢c — 4a. )
If there is no fertility differences (i.e., if a = b = ¢ = 0),

(8) reduces to (1). Note that the mean fitness of the popu-
lation, which is given by the product of the mean fertility
and the mean viability (Nagylaki 1987), is

w=1-—2Q2a + s)pq + 2(4a — b — 2c)p*q*>. (10)

I will be interested in situations where the dynamics of a
randomly mating population have two stable monomorphic
equilibria and a single unstable polymorphic equilibrium at
p = %, as was the case in the viability selection model. For
this to be the case, one has to require that A = 0 and. A +
B/4 = 0 or, equivalently,

s+a=0, s+ (b+ 2)4 =0, (11)

where at least one inequality should be strict. (If both in-
equalities in (11) are reversed, the single polymorphic equi-
librium at p = % is stable. If only the former inequality is
reversed, there are two additional polymorphic equilibria (at
p such that pg = [b + 2¢ — 4a]/[s + al), which are unstable,
while both monomorphic equilibria and the polymorphic
equilibrium at p = % are stable. If only the latter inequality
is reversed, the two additional polymorphic equilibria are
stable, while three remaining equilibria are unstable).
Consider now a population occupying a continuous, one-
dimensional, uniform habitat. An analog of (2) with both
viability and fertility selection is
p _c2d%p

=——+ — @)(A + Bpg). 12
ot 2 a2 T PAP ~ 9 Pq) (12)
When two geographically disjoint populations, one fixed for
allele A and another fixed for allele a, come into contact, a
narrow zone where heterozygotes are produced arises. The
resulting cline in allele frequencies is given by the equilib-

rium solution of (12), which can be found analytically. The
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width of the hybrid zone characterized as the inverse of the
gradient of p at the center of the cline is

a2

v 4\/ 2s + al3 + bl6 + c/3) a3
(cf. 4a). In describing the cline shape, I will use an inde-
pendent variable x’, the deviation from the center of the cline
normalized to the half of the width of the hybrid zone, x' =
(x — xp)/(w/2). If B = 0, the equilibrium solution of (12) is
given by (3) with A taking place of s. f A = 0 and B # 0,
this solution is

1 x'
==1+ ——]. 14
P 2( \/1+—x,2—> (14a)
If A > 0 and B # 0, the cline p = p(x) is implicitly defined
by

1 1 +2Cq + V1 + 4G
X =-V1+Cmf& 1 il
2 q1+2Cp + V1 + 4Cpgq

where ¢ = 1 — p and C = B/(6A4) > —1. If C = 0, equation
(14b) produces Bazykin’s cline (3), while if C — o, it pro-
duces cline (14a). Equations (13-14), which generalize clas-
sical Bazykin’s (1969) results for the case of both viability
and fertility selection, represent the main theoretical results
of this note. In the next section I discuss the differences
between Bazykin’s clines and those described by equations
(13-14).

), (14b)

COMPARISON OF CLINES FROM VIABILITY SELECTION WITH
CLINES FROM VIABILITY/FERTILITY SELECTION

Cline Width

In the case of both fertility and viability selection, the
difference in mean fitness between populations at the center
of the cline and the edge is

s* = (4s + 4a + b + 2¢)/8. (15)

Comparing this with (13), one can see there is no simple
relation between s* and w similar to (4b).

Let us denote by wp the cline width produced by viability
selection only with s = A, where A is the heterozygote’s
reduction in fitness. Then in a model where viability selection
is absent (s = 0) and the reductions in fertility of matings
between different genotypes are the same (a = b = ¢ = A),
the cline width w = V6/5wp. In a model with both viability
and fertility selection with s = a = b = ¢ = A, w =
V' 6/11wp. This and the form of (13) suggest that for com-
parable strength of selection, the width of the hybrid zone is
only slightly affected by incorporating fertility selection. As
expected, any type of hybrid or recombinant deficiency makes
the hybrid zone narrower, but different types of selection have
different efficiency. Parameters s (reduction in heterozygotes’
viability) and b (reduction in fertility of matings between
parental genotypes) have the most and the least influence,
respectively, while parameters a (reduction in fertility of mat-
ings between a parental genotype and a hybrid) and ¢ (re-
duction in fertility of matings between hybrids) have inter-
mediate (and equal) influence.
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Fic. 1. Clines maintained by a balance between dispersal and

viability-fertility selection on a single locus. Allele frequencies are
plotted against distance on a logit scale; the clines are scaled so all
have the same position and width. Numbers give the corresponding
C-values.

Cline Shape

Figure 1 compares the cline shape in several models using
a logit scale (i.e., using In(p/q) instead on p; cf. Figs. 2.1,
2.2 in Barton and Gale 1993). Given are Bazykin’s cline (3)
(corresponding to C = 0), the cline given by (14a) (corre-
sponding to A = 0 or, equivalently, C = ), and several
intermediate cases. The case with A = 0 can happen if both
heterozygotes are viable (s = 0) and matings between a het-
erozygote and a parental genotype are fertile (a = 0), or if
reduction in fertility of these matings is balanced by increased
viability of heterozygotes (overdominance) such that s > 0,
a <0,s + a= 0. The case with C = 1 happens ifa = b =
0, s = A, ¢ = 3A, that is, if besides viability selection only
heterozygote-heterozygote matings have reduced fertility.
The case with C = —% happens if s = b = ¢ = 0, a = A,
that is, if the only type of selection is reduced fertility of
matings between heterozygotes and parental genotypes. The
case with C = —% o happensif s =b=0,a=A,c = —1.4A,
that is, if matings between heterozygotes and parental ge-
notypes have reduced fertility, but matings between hetero-
zygotes have increased fertility. Figure 1 shows that devia-
tions of C from zero result in deviations of the cline shape
from the straight line. If C > 0, the frequency of a rare allele
reduces much slower with the deviation from the cline center
than in Bazykin’s cline. If C < 0, the frequency of a rare
allele reduces much faster with the deviation from the cline
center than in Bazykin’s cline. Since C > 0 if b + 2¢ > 4aq,
the former case is expected when there is strong deficiency
in fertility of matings between different parental genotypes
and/or between heterozygotes. The latter case is expected
when there is strong deficiency in fertility of matings between
heterozygotes and parental genotypes. In general, the cline
shape strongly depends on fine details of fertility selection.
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PREMATING REPRODUCTIVE ISOLATION

The model leading to dynamic equations (6) implies that
the probability of mating between a female and a male given
that they have met does not depend on their genotypes. How-
ever mating between individuals can be prevented to some
degree by premating reproductive isolation mechanisms. Let
m;; be the probability of mating between a male with genotype
i and a female with genotype j given that they have met (i,
J = 1, 2, 3). The dynamics of the genotype frequencies is
now described by equations (6) with

Note that, as before, f;; = fj;. Given the matrix {f;} has form
(7), all results from the previous section remain valid. In this
model, effects of premating reproductive isolation are similar
to those of fertility selection.

SYMMETRIC SELECTION AGAINST RARE PHENOTYPES

Gavrilets and Hastings (1995) introduced a symmetric
model of linear frequency-dependent selection. In this model,
the genotype fitnesses are linear functions of the genotype
frequencies

Waa = xWyy + yWiy + zWi3, (17a)

Wag = xWy1 + yW,, + zWops, (17b)
and

Waa = XW31 + yWs, + z2Was, (17¢)

where x = p?, y = 2pq, and z = ¢? are the frequencies of
three genotypes, and the matrix of the coefficients W;; char-
acterizing the extent to which changes in the genotypes fre-
quencies influence their fitnesses has form

8 B a
Y Mmooy (18)
o B 8

For this symmetric model to produce feasible (i.e., non-neg-
ative) fitnesses, one has to assume that o, y, 8 > 0, B >
Vs, m > —v. If selection is weak, the dynamics of p in
a single randomly mating population in this model are ap-
proximated by (8) with

A =3 -y, B=-8—-—a+2B +2y—2m. (19

Ifd =+v,38 =a — 28 + 2y + 2, where at least one
inequality is strict, the dynamics have two stable monomor-
phic equilibria and an unstable polymorphic equilibrium at
p = %. In this case, which corresponds to selection against
rare phenotypes, results from the previous sections can be
used for describing hybrid zones.

Hybrid zones arizing from selection against rare pheno-
types have been studied by Mallet and others (Mallet and
Barton 1989; Mallet et al. 1990; Mallet 1993). Mallet and
Barton (1989) have considered two models representing par-
tial cases of model (17). Their models describe the dynamics
of warning and mimetic coloration assuming that when a form
(e.g., of a butterfly) is rare, it is selected against because
predators (birds) do not recognize it as unpalatable. One mod-
el considered by Mallet and Barton (1989, eq. 2) leads to C
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= 0 and Bazykin’s cline (3). Another model (their eq. 4 with
h = %) leads to C = —%. The model resulting in C = —%
assumes that predators identify heterozygotes as either ho-
mozygote with probability %. A simple model for situations
where all three genotypes look different to the predator is to
assume that

waa =1 — A(y + 2), (20a)

Waa = 1 — Alx + 2), (20b)
and

Wae =1 — Ax + y), (20c)

where A is a positive parameter measuring the strength of
selection. In this case, the dynamics of p (= x + y/2) in a
single randomly mating population are described by (8,19)
withd =m =1, a =B =y =1 — Aresulting in C = %,
The cline is wider by a factor V2 than Bazykin’s cline and
the cline shape described by (14b) deviates from that of Ba-
zykin’s cline significantly.

CONCLUSION

In a classical paper, Bazykin (1969) found the form of a
single locus cline arising from viability selection against het-
erozygotes when two geographically distinct populations, ini-
tially fixed for alternative alleles, come into contact in a
continuous, one-dimensional habitat. Here I have generalized
Bazykin’s results for the case of postmating reproductive iso-
lation in the form of fertility selection as well as-premating
reproductive isolation. Fertility differences and premating re-
productive isolation influence both the width and the form
of the cline. Any type of hybrid or recombinant deficiency
makes the hybrid zone narrower, but overall the width of the
hybrid zone (measured by the inverse of the maximum gra-
dient of allele frequency) is only slightly changed by fertility
differences. This agrees with Barton and Gale’s (1993) as-
sertion that the mechanism of selection has little effect on
the width of the clines. Fertility selection, as well as pre-
mating reproductive isolation, have much more profound ef-
fect on the shape of hybrid zones, which strongly depends
on fine details of isolating mechanisms. In general, with
strong reduction in fertility and/or probability of matings
between different parental genotypes and/or between heter-
ozygotes, the frequency of a rare allele reduces much slower
with the deviation from the cline center than in Bazykin’s
cline. Slight overdominance (increase in heterozygotes via-
bility) can significantly broaden the area where rare alleles
have non-negligible frequencies. On the other hand, with
strong reduction in fertility and/or probability of matings
between parental genotypes and heterozygotes, the frequency
of a rare allele reduces much faster with the deviation from
the cline center than in Bazykin’s cline. The description of
single locus clines developed here can also be used for clines
arising from selection against rare phenotypes, as in systems
of warning and mimetic coloration. For comparable param-
eter values this form of selection leads to sharper clines than
in Bazykin’s model. The model studied here is of a single
locus under symmetric selection. Slight asymmetries in fit-
ness cause the clines to move, but local inhomogeneities can
trap them. Clines may be wider if selection acts on many
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loci, and recombination breaks these apart so that selection
acts on their (small) individual effects.
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