Popul Ecol (2002) 44:51-58

© The Society of Population Ecology and Springer-Verlag Tokyo 2002

SPECIAL FEATURE: ORIGINAL ARTICLE

Sergey Gavrilets - Nathan Gibson

Fixation probabilities in a spatially heterogeneous environment

Received: February 1, 2002 / Accepted: April 30, 2002

Abstract We consider a simple model of a one-locus,
two-allele population inhibiting a two-patch system and ex-
periencing spatially heterogeneous viability selection. The
populaton size is finite. We use a diffusion approximation
and singular perturbation techniques to find the probability
of fixation of a mutant allele. We focus on situations in
which each allele is advantageous in one patch and deleteri-
ous in the other patch. Our theoretical results support the
previous conclusions that, under certain conditions, small
populations respond faster to selection than do large popu-
lations. We emphasize that knowledge of the dependence of
migration rates on population size is crucial in evaluating
the effects of population size on the rate of evolution.
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Rate

Introduction

Spatial heterogeneity of both biotic and abiotic environ-
ments across a species range is ubiquitous. This heterogene-
ity is expected and has been repeatedly demonstrated
experimentally to result in variation in selection acting
on individual alleles (and traits) or their combinations
(Hedrick et al. 1976; Hedrick 1986; Bell 1997; Mitton 1997,
Stratton and Bennington 1998). Commonly, there are
trade-offs, such that the alleles that are advantageous in one
environment become deleterious in another (Futuyma and
Moreno 1988; Van Tienderen 1991; Cooper and Lenski
2000). These trade-offs have very important evolutionary
implications. The one that has received the most attention is
an opportunity for the maintenance of genetic variation
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in natural populations, especially if migration is limited
(Levene 1953; Dempster 1955; Felsenstein 1976; Hedrick et
al. 1976; Karlin 1982; Hedrick 1986). The interaction of
spatial heterogeneity in selection and restrictions on migra-
tion can also affect the rates of evolution and the likelihood
of speciation.

The common textbook-type wisdom is that large popula-
tions are more responsive to selection than small popula-
tions. However, in natural populations one usually observes
strong positive correlations between the population density,
dispersal ability, and the species range size (Gaston 1994,
1996, 1998), which implies that the most abundant species
typically face the most heterogeneous environment and
have the highest dispersal ability. Ohta (1972) argued that
the probability that a mutant allele is advantageous on aver-
age across a range of environmental conditions experienced
by a population should decrease with population size:
“...the greater the population size, the greater is the habi-
tat diversity; the greater the diversity, the smaller is
between-mutant variance of selection coefficients; the
smaller the variance . . ., the smaller is the probability that
a new mutant will behave as if it were advantageous” (pp.
308-309). Ohta’s conclusion was that the rate of advanta-
geous gene substitutions should be higher in small popula-
tions even though the number of mutants arising in such
populations is smaller than in large populations. Eldredge
(1995, 2002) uses a similar reasoning to argue that abundant
species will exhibit evolutionary stasis and that speciation
driven by selection is expected to occur after isolation of
small (peripheral) populations rather than in large wide-
spread populations (Eldredge and Gould 1974). The ques-
tion of spatial heterogeneity in selection is also relevant in
the context of a recent debate on Wright’s shifting balance
theory and its alternatives (Gavrilets 1996; Coyne et al.
1997, 1998; Wade and Goodnight 1998). Wright’s theory
does appear to have serious problems (Gavrilets 1996;
Coyne et al. 1997). However, the alternative advanced by
Coyne et al. (1997, 1998) — simple mass selection — hinges on
a questionable assumption that species experience identical
selection regimes across their geographic ranges. Although
some mutations are advantageous throughout the range of a
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species, such mutations are expected to be rare compared
with those adapting a local population to specific ecological
conditions it encounters (Futuyma 1987). Spatial heteroge-
neity in selection also plays a prominent role in recent at-
tempts to reconcile continuous microevolutionary change in
local populations with widespread macroevolutionary stasis
at the species level (Eldredge et al. submitted).

In contrast to the abundant theoretical literature on the
maintenance of genetic variation (see the references cited
here), only a handful of papers studied the rates of fixation
in spatially heterogeneous environments. In a pioneering
paper, Pollak (1966, see also 1972) found the probability of
fixation of a mutant allele under a general migration scheme
using a branching process approximation. Ohta (1972) cal-
culated the fixation probability and the rate of fixation for
alleles advantageous on average, assuming implicitly that
the migration rates are so high that specific spatial structure
of the species is unimportant. Ohta’s approach can be
justified by Nagylaki’s (1980) results on a high migration
limit in the diffusion approximation. Pollak (1972) did not
study or discuss the validity of the approach he used. His
approximation was questioned by Tachida and lizuka
(1991), who wrongly believed that Pollak’s method pro-
duces estimates of fixation probabilities that do not depend
on migration rates. Tachida and lizuka (1991) developed an
alternative approximation for the probability of fixation
that is appropriate when migration is extremely weak. They
also studied several cases of migration that was not ex-
tremely weak numerically and demonstrated analytically
that, if selection is very weak, then the subdivided popula-
tion can be treated as panmictic with an average selection
coeffcient.

Here, we study the probability of fixation of a mutant
allele in a species inhabiting two discrete patches with a
different selection regime. We use singular perturbation
techniques (Kevorkian and Cole 1996; Grasman and van
Henwaarden 1999) to solve a two-dimensional diffusion
equation controlling the probability of fixation.

Model

We consider a diallelic locus with alleles a and A.
The population is subdivided into two subpopulations
connected by migration with rate mi; that is, m is the prob-
ability of migration to a different population per genera-
tion. We assume diploid inheritance with additive fitnesses.
The relative fitnesses of allele A are 1 + s, and 1 + s, in the
first and second subpopulations, respectively. If the coeffi-
cient s, is positive (negative), then the allele A is advanta-
geous (deleterious) relative to the allele a in the patch i. We
assume that both selection and migration are weak (|s;], |s,|,
m << 1).

Deterministic dynamics

Neglecting effects of random genetic drift, the deterministic
dynamics of the frequencies of allele A in the first, p,, and

second, p,, subpopulations are described by a system of
coupled ordinary differential equations:

(1a)
(1b)

D= S1P1(1 _P1) + m(Pz _Pl)
D) = Ssz(l _Pz) + m(P1 _Pz)

where p, and p, are the derivatives of p, and p, with respect
to time. In these equations, the first terms specify the effects
of selection for local adaptation whereas the second terms
specify the homogenizing effects of migration. The dynam-
ics of system (1) are simple. If
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then allele a is fixed for any initial conditions (that is a
monomorphic equilibrium with p, = 0, p, = 0 is globally
stable). If
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then allele A becomes fixed for any initial conditions (that
is, a monomorphic equilibrium with p, = 1, p, = 1 is globally
stable). If conditions 2 and 3 are violated simultaneously
(meaning that neither monomorphic equilibrium is stable),
the system evolves to a stable polymorphic equilibrium
(that is, a single polymorphic equilibrium exists and is glo-
bally stable). A necessary condition for this is that selection
coefficients s, and s, have opposite signs. If s, > 0, s, <0,
then the allele frequencies at the polymorphic equilibrium
are given by these expressions:
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If s, <0, s, > 0, then the signs in front of the square roots in
these expressions must be changed to the opposite. Figure 1
summarizes the conditions for existence and stability of
different equilibria. This figure shows that an allele is fixed
deterministically if it is advantageous in both environments
or if it is advantageous in one environment and its deleteri-
ous effect in the other environment is not too strong. The
population approaches a stable polymorphic state if each
allele is advantageous in one environment and is deleterious
in the other environment and the fitness differences are
sufficiently large.

Diffusion approximation

Assume that each subpopulation has a constant size N (N
>> 1). Let u(x, y) be the probability of fixation of allele A
given that initially p, = x, p, = y. Then, function u(x, y)
satisfies a partial differential equation:
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Fig. 1. Parameter space summarizing the conditions for existence and
stability of different equilibria of the deterministic system (1)

— 2 _ 2
(=) | y1-y)du [s.x(1 — x)
4N  0dx 4N  dy )

ou ou
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with boundary conditions u(0, 0) = 0, u(1, 1) = 1 (Tachida

and lizuka 1991, equation 8). Here, the terms in the square

brackets describe the expected changes in the frequency of

allele A in the two subpopulations (as given by the right-

hand side of Eq. 1). The terms in front of the second deriva-

tives are equal to one-half of the expected variance of allele

frequency under the Fisher—Wright binomial scheme for
random genetic drift (Crow and Kimura 1970).

Results

Next, we describe some exact and approximate solutions
of Eq. 5. The details of the derivations are given in the
Appendix.

No heterogeneity in selection (s; = s, = )

If selection coefficients are equal, then direct substitution
into Eq. 5 shows that the exact solution is

_1- exp(—4N;sp)
1 — exp(—4Nys)

(6)

u

where N; = 2N is the total size of the population and p =
(x + y)/2 is the overall initial frequency of allele A. Thus,
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with no heterogeneity in selection, the probability of
fixation is the same as in a single randomly mating popula-
tion with size 2N (compare Eq. 6 and with a classical equa-
tion for the probability of fixation of an additive allele; e.g.,
Kimura 1983). Maruyama (1970) has already shown this
using a different approach.

Allele A is advantageous on average

If allele A is advantageous on average (that isif s; + 5, > 0),
then the probability of fixation is approximately

_ 1- exp[—4N(ax + by)]
T exp[—4N(u + b)]

™)

where a and b are positive values satisfying a system of two

nonlinear algebraic equations:
az—asl-I-m(a—b):O

bz—bs2+m(b—a)=0

(8a)
(8b)

Allele A is deleterious on average

If allele A is deleterious on average (that is, if s, + s, < 0),
then the probability of fixation is approximately

exp[4N(ax + by)] -1

T Texp[an(a + )] - 1 ®)

where a and b are positive values satisfying a system of two

nonlinear algebraic equations:
a’+as,+mla—b)=0 (10a)
b>+ bs, + m(b—a)=0 (10b)

Allele A is neutral on average

If allele A is neutral on average (that is, if s, + s, = 0), then
the probability of fixation is approximately

(u+ + u,)

(11)

[N

Uy =

where u, and u_ are given by Eqgs. 7 and 9, respectively.
Figure 5 in the Appendix shows that the approximations
are rather good.

Discussion

We start discussing our results by comparing our approach
with the approaches of Pollak (1966, 1972) and Tachida and
Tizuka (1991). Then we consider how migration rate affects
the probability of fixation, and, finally, we discuss the impli-
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cations of our findings for the relative rates of evolution of
small and large populations in a spatially heterogeneous
environment.

Relation to previous work

Pollak (1966) found the probability of fixation using a
branching process approximation. Let o, (= 1 + s,) be the
relative fitness of allele A in the ith subpopulation (i =
1,..., n). In Pollak’s (1966) approximation, the fixation
probability is

1—rd...m¥
U= —————— 12
1— M. . o« (12)

where z; and N, are the initial number of mutants and the
size of the ith subpopulation, and r; is the probability that
the line descended from a single gene A in subpopulation i
becomes extinct in the infinite population case. Probabili-
ties m; satisfy to a system of # nonlinear algebraic equations:

= exp{aiim,j(nj - 1)} (13)

where m;; is the probability of migration from subpopula-
tion i to subpopulation j (see Pollak 1972 for some ap-
proaches to solve these equations).

In the case of two demes (n = 2), Pollak’s equations
produce an approximation for the probability « that is iden-
tical to the one corresponding to our Eq. 7. The easiest way
to see this is to switch from 7#; to 9, = 1 — &, in Eq. 13, take
the natural logarithm of both sides of the resulting equation,
and then expand the expression in its left-hand side [that is,
In(1 — ;)] in a Taylor series, keeping the linear and qua-
dratic terms. The resulting equations for ¥, and v, are
equivalent to Eq. 8 for a and b. In a similar way, Pollak’s
(1966) equation 5.1 is equivalent to our approximation 9.
Thus, when a mutant allele is advantageous or deleterious
on average, the approximations based on branching
processes and on the singular perturbation of diffusion
equation give identical results. The branching processes ap-
proach, however, does not provide a satisfying way to esti-
mate the probability of fixation when the mutant allele is
neutral on average. The latter situation is expected to be
common when the environment is highly heterogeneous.

Tachida and lizuka (1991) developed an alternative
Markov chain approximation for the probability of fixation
that is appropriate when migration is very weak relative to
selection (see Lande 1979; Slatkin 1981; Barton 1993;
Gavrilets 2000 for other applications of this approxima-
tion). In a special most interesting case when the alleles are
neutral on average (s, = —s, = s > 0), Tachida and lizuka’s
approximation is

— Ugay + Uger

4

where u,, is the probability of fixation of an allele in an
isolated population where the allele is advantageous, and

u,, is the probability of fixation of an allele in an isolated
population where it is deleterious. If selection is not too
weak, then u,,, =~ 2s/(1 — exp(—4Ns)), u,, = 0 (Kimura
1983) resulting in

s/2

u = 1 _ 674Ns

(14)
Note that this value does not depend on the migration rate.
Tachida and lizuka demonstrated the validity of their ap-
proximation by comparing it with a numerical solution of
a partial differential equation arising in the corresponding
diffusion approximation. Our results support their conclu-
sion that the Markov chain approximation is good if
m = 0.005.

Effects of migration rate on fixation probability

Tachida and lizuka (1991) argued that spatial subdivision
increases the probability of fixation relative to the case of
free migration between the subpopulations. Pollak’s nu-
merical results (e.g., Table 3 in Pollak 1972) lead to a similar
observation. Another illustration is presented in Fig. 2,
which shows fixation probabilities when s, = —s, for differ-
ent migration rates m and population sizes N. In this figure,
the lines corresponding to m = 0.005 would practically coin-
cide with those based on the Tachida-lizuka approxima-
tion. As s becomes very small, the fixation probability
approaches the neutral limit 1/(4N). The same happens as
the migration rate becomes large because in a well-mixed
population the alleles become effectively neutral. Note that
the increase in the probability of fixation at low migration
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fixation probability, u

0.005 +
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Fig. 2. Fixation probabilities when s; = —s, for different migration
rates m and population sizes N. For each value of m there are three
lines corresponding to N = 50, 100, and 200 (from the top line to the
bottom line)



rates relative to that at high migration rates can be rather
substantial, especially if the population size is large.

Relative rates of evolution of small and large populations
in a spatially heterogeneous environment

Effects of population size on the rates of evolution in a
heterogeneous environment were discussed by Ohta (1972)
and Eldredge (1995, 2002). [Note that other previous dis-
cussions of the effects of population size on the rates of
molecular evolution (Cherry 1998; Gillespie 1999, 2001) did
not consider spatial factors, which do concern us here.] As
illustrated in Fig. 2, the fixation probability decreases with
migration rate and, unless the selection coefficient is very
small, does not depend on the population size. In natural
populations, population sizes are usually positively corre-
lated with migration rates (Gaston 1994, 1996, 1998). Thus,
in the case of spatially heterogeneous environment with
s, = —s,, fixation probabilities in large populations will be
smaller than in small populations. By itself, this, however,
does not mean that the rates of fixation will be smaller as
well because large populations have more mutants than
small populations.

For neutral alleles, the rate of fixation, R, is equal to the
mutation rate, u. If migration rate in the two-deme system
with s, = —s, is large, the alleles will behave as neutral.
Therefore, the rate of fixation in a heterogeneous environ-
ment in the high population size—high migration limit is

Rijgn = 1 (15a)

In the low migration limit considered by Tachida and lizuka
(1991), the fixation rate is given by Eq. 14. With 4Nu muta-
tions per generation, this gives the low population size—low
migration limit of the rate of fixation in a heterogeneous
environment as

S/2
Rlow = /M# (15b)
where § = 4Ns. If § > 1.59, then R, > Ry

Which of the two approximations (Eq. 15a, 15b) will be
more general or appropriate and which populations — small
or large — will evolve faster? The answers to these questions
are expected to depend on how the rate of migration scales
with the population size. Figure 3 describes two different
hypothetical relationships between N and m. For the con-
vex dependence A, relatively large values of N are com-
patible with small m. In this case, (moderately) small
populations will be in the domain of approximation 15b and
will have higher fixation rates than large populations, which
will be in the domain of approximation 15a. In other words,
for convex dependencies we expect small populations to
evolve faster. For example, let s, = —s, = 0.005. In this case,
Eq. 11 predicts that a large population with N = 10000 and
m = 0.1 will fix mutations at a rate R = 4.99u. In a small
population with N = 1000 and m = 0.005, the rate of
fixation is R = 6.58 u, which is higher than that for the large
population. On the other hand, for the concave dependence
B, migration rate m is large even with relatively small values
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migration rate

population size

Fig. 3. Two hypothetical dependencies of the migration rate on the
population size

of N, meaning the population is well mixed. In this case only
very small populations will be in the domain of approxima-
tion (15b). However, because N is small, the fixation rates
will be small as well. In other words, for concave dependen-
cies we expect larger populations to evolve faster. For ex-
ample, in a small population with N = 1000 and m = 0.015,
Eq. 11 predicts that the rate of fixation is R = 3.10u, which
is lower than that for the large population. These examples
show that knowledge of the dependence of migration rates
on population size is crucial in evaluating the effects of the
population size on the rates of evolution.

Recently, Gillespie (2001) concluded that under certain
conditions stochastic fluctuations in allele frequencies are
more important in large populations than in small popula-
tions. Our results collaborate previous arguments of Ohta
(1972) and Eldredge (1995, 2002) that under certain condi-
tions selection is more important in small populations
than in large populations. These examples concur with a
common knowledge that certain textbook-type wisdoms
occasionally require reevaluation.
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Appendix

To find approximate solutions of Eq. 5, we used singular
perturbations techniques (Kevorkian and Cole 1996;
Grasman and van Henwaarden 1999). This equation can be
rewritten as
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2 2

d 0
ex(l — x)aTI: +ey(1 - y)# + [s]x(l - x)
+m(y — x)]a—u + [szy(l —y) +m(x — y)]a—u =0
ox dy

(16)
where & = 1/(4N).

Deterministic equilibrium (1, 1) is stable. Assume that
the values of the parameters guarantee the stability of
equilibrium (1, 1) in the deterministic case. If & << 1, we
expect that u = 1 for x and y away from the point (0, 0) and
that the solution u has a boundary layer in a neighborhood

Fig. 4. Numerical solutions of Eq. 16 with m = 0.05. a s, = 5, = 0.05.
The solution has a boundary layer in a neighborhood of (0,0). b s, = s,
= —0.05. The solution has a boundary layer in a neighborhood of (1, 1).
c¢ s, = 0.05, s, = —0.05. The solution has two boundary layers in the
neighborhoods of (0, 0) and (1, 1). The independent variables x, y are
expressed as percentages

of this point (see Fig. 4a). We introduce new variables &
and 7 such that x = ¢, y = ¢y. Note that d/dx = & “d/
0&, 0/dy = £“0/dn, 9*/ox* = ¢ *“9*10&%, 9*/9y* = & *“0°/on’, and
x — y = &(& — ). Substituting into Eq. 16, one
finds that all terms have the same order in ¢ if @ = 2 and
that to the dominant order this equation can be approxi-
mated as

o’u o’u 0
R Py [(s, — m)& + mn]é
Ju (a7
+ [m§ + (s2 - m)n]ﬁ =0
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We will use the Ansatz

u= ¢, + c,exp(—a& — bny) (18)

where coefficients a > 0 and b > 0 are chosen to satisfy Eq.
17 and coefficients ¢, and ¢, are chosen to satisfy the bound-
ary conditions. Substituting this Ansatz into Eq. 17, one
finds the equality

eXp(—a& - bn)[cf(az —as, + am— bm) 19)
+ 77(b2 — bs, + bm — am)] =0

This result shows that a and b must be positive roots of the
system of nonlinear algebraic equations:
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Fig. 5. Probability of fixation of allele A for different values of s,.
Numerical solutions are given by symbols: circles, allele A is advanta-
geous on average with s; + s, = 0.02; triangles, allele A is neutral on
average with s, + s, = 0; squares, allele A is deleterious on average with
s, + 5, = —0.02. The corresponding analytical approximations are given
by solid lines. a m = 0.0005; b m = 0.005; ¢ m = 0.05

az—asl-i-m(a—b):O

bz—bs2+m(b—a)=0

(20a)
(20b)

Matching boundary conditionsatx =y =0andx =y =1,
one finds that

ag+¢6,=0¢+c exp(—4N(a + b)) =1

leading to solution 7.

Deterministic equilibrium (0, 0) is stable. If the parameters
are such that the deterministic equilibrium (0, 0) is stable,
then the boundary layer is located in a neighborhood of the
point (1, 1) (see Fig. 4b). In this case the appropriate vari-
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able changeisx =1 — &5,y = 1 — &y with a = 2. Note that
0/0x = —& “0/0&, d/dy = —e “0/om, 3°/0x* = & *“0°1dE’, 9°/dy”
= ¢ 9/0y’, and x — y = —&“(§ — n). The derivations
leading to the approximate solution 9 are analogous to
those already considered, with the difference that the sign
of the second terms in Eq. 20 changes to the opposite.

Deterministic equilibrium (p¥%, p¥) is stable. Let the param-
eter values guarantee the existence of a polymorphic equi-
librium. We expect the solution of Eq. 16 to have two
boundary layers [in the neighborhoods of the points (0, 0)
and (1, 1), respectively] similar to those considered above
and to be close to a constant for other values of x and y (see
Fig. 4c). If s, = —s,, then from the symmetry it follows that
the constant must be equal to 1/2, leading to the approxi-
mate solution 11. If s; # —s,, then the constant must be close
to 0 or 1 depending on whether s, + s, is negative or posi-
tive, leading to approximate solutions 7 and 9.

Figure 5 shows that the approximate solutions are rather
precise.
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