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Abstract.—We propose a series of simple models of founder effect speciation. In these models,
the resulting reproductive isolation (as measured by the proportion of inviable hybrids or the
strength of the barrier to gene exchange between populations) can be very high and can evolve
with a high probability on the time scale of dozens or hundreds of generations. In developing
our theoretical framework, we utilize Dobzhansky’s idea that strong selection against hybrids
between two genotypes can occur simultaneously with the existence of a chain of genotypes
that connect those two and differ only weakly in fitness among themselves. The mathematical
models that we have studied are closely related to the verbal schemes of Mayr’s ‘‘genetic
revolutions,” Carson’s founder-flush process, and Templeton’s genetic transilience. For appro-
priate parameter values, our theoretical models demonstrate that founder effect speciation is
plausible; its importance becomes an empirical question.

We discuss in this article how a population can evolve to a state that is repro-
ductively isolated from its ancestor state. For those accepting the biological spe-
cies concept (Mayr 1942), this is the central problem of speciation. Evolution of
reproductive isolation is influenced (at least potentially) by many genetic, ecologi-
cal, developmental, behavioral, environmental, and other factors in different
ways. If one wants to make the discussion less speculative, one should necessar-
ily concentrate on only some of them while neglecting others. Our analysis will
be based on (and, hence, limited by) several simplifying assumptions. It is easier
to list factors that we are going to consider than those that we are not. We will
consider only postzygotic isolation manifested in (and defined as) reduced or zero
fitness of hybrids and backcrosses. Following most previous theoretical discus-
sions of the evolution of postzygotic isolation, we start by considering a randomly
mating diploid population with discrete generations under constant viability selec-
tion. We assume that the population size is very large and externally regulated.
Mutation and recombination rates are constant. We also assume that the loci are
diallelic, that the population is dioecious, and that sexes are equivalent with
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respect to fitness. This set of assumptions is common in the population-genetics
literature and can be called the standard population-genetics model.

The standard population-genetics model has been intensively analyzed (see
reviews in Ewens 1979; Hastings 1989; Nagylaki 1992). The dynamic behavior of
this model depends sensitively on selection (as described by genotype fitnesses)
and recombination, but, nevertheless, two general observations can be made.
Although examples of cyclic behavior are known (Akin 1979; Hastings 1981) and
examples of evolution toward a line of equilibria can be easily constructed, typi-
cally the population evolves toward an equilibrium point (Hastings 1989). The
second observation is that several such equilibria can be stable simultaneously
(see, e.g., Franklin and Lewontin 1970; Feldman and Liberman 1979; Hastings
1985). Within the framework of the standard population-genetics model, different
stable equilibria correspond to populations at different stable states. Genetic vari-
ability at these states is augmented or maintained by mutation. Two equilibria
can be considered as describing two reproductively isolated populations if the
corresponding hybrids have zero fitness. (Here by hybrids we mean all genotypes
that can potentially be produced by a pair of individuals coming from populations
at different equilibria.) The problem of the evolution of reproductive isolation is
now the problem of how a population can move from one state to a different
state reproductively isolated from the first one. Obviously, the evolution of repro-
ductive isolation is not possible without relaxing some of the assumptions of the
standard model, for otherwise the population stays at a given equilibrium forever.

Many assumptions can be relaxed, and many additional factors can be incorpo-
rated in the model. Among factors that can, potentially, contribute to the evolu-
tion of reproductive isolation, random genetic drift has attracted substantial atten-
tion. An obvious reason for this interest is that population sizes are never infinite,
and, hence, stochastic factors are always present. With finite population sizes,
random genetic drift can, presumably, move a population from the domain of
attraction of one deterministic equilibrium to the domain of attraction of another
deterministic equilibrium. This suggests that stochastic factors can cause evolu-
tion of reproductive isolation even when the overall selection regime does not
change. Analytical approximations and numerical simulations (see, e.g., Lande
1979, 1985b, 1986; Walsh 1982; Barton and Charlesworth 1984; Barton and Rou-
hani 1987) show that the probability of stochastic transitions quickly diminishes
‘with increasing population size. Unless selection is extremely weak, with popula-
tion sizes of the order of thousands of individuals, stochastic transitions are prac-
tically impossible. The population sizes of most species are much larger (Nei
and Graur 1984). However, two properties of natural populations may keep the
probability of stochastic transitions nonnegligible: populations are typically subdi-
vided, and the processes of extinction and colonization may be common. These
properties can lead to a small effective population size (at a given location or
during some time interval) and make stochastic transitions plausible.

Two theories utilizing these properties have been proposed: the shifting balance
theory (Wright 1931, 1980) and the founder effect speciation theory (Mayr 1942,
1954). The theories have in common stochastic transitions initiated in a small
subpopulation (partially or completely) isolated from the rest of the species, but
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they differ in describing how the number of individuals with ‘‘new’’ genotypes
becomes large enough to be considered a new species that can sustain itself.

The shifting balance theory considers a population subdivided into many groups
connected by migration. In this scenario, a new adaptive combination of genes
first becomes established by chance in a single subpopulation (or, in the continu-
ous version of the theory, in a sufficiently large spatial area) and then takes over
the whole population. Two stochastic and one deterministic mechanism of the
latter stage (phase 3 in Wright’s terminology) have been formally studied. Lande
(1979, 1985a) has considered a situation in which a new combination of genes
that has become established in a single subpopulation takes over the whole popu-
lation as a result of stochastic extinction and colonization. In Barton and Rou-
hani’s (1993) and Rouhani and Barton’s (1993) models, the influx of migrants from
demes carrying a new combination of genes makes it more likely that the deme
will shift to this combination as a result of random fluctuations. Several articles
considered the spread of a new combination of genes to be a deterministic process
resulting from ‘‘competition’’ between different combinations of genes and excess
population growth and excess emigration (see, e.g., Rouhani and Barton 1987,
Gavrilets 1995). The general conclusion that can be drawn from all these analyses
is that conditions for stochastic transitions are severe. Even under the most
favorable conditions, stochastic peak shifts can occur rarely (at the time scale of
tens of thousands generations) and can only result in weak reproductive isolation.
To produce strong reproductive isolation, many subsequent peak shifts have to
take place. Given these analyses, one can conjecture that the shifting balance
process cannot be important if reproductive isolation is to evolve quickly.

A different scenario that can potentially result in a very rapid evolution of
reproductive isolation is described by the theory of founder effect speciation.
Several versions are known (Mayr 1942, 1954; Carson 1968; Kaneshiro 1980;
Templeton 1980; Carson and Templeton 1984; see also Provine 1989, for a history
of this theory). This theory has been the favored explanation for at least island
speciation since 1954 (Provine 1989) and has been used to support the theory of
punctuated equilibrium (see Somit and Peterson 1992). In the scenario envisioned
in founder effect speciation, a few individuals found a new population that is
geographically isolated from the ancestral species and that expands to fill a new
area. In this theory, the stochastic shift happens during a short time interval when
the size of the expanding population is still small. One of the inherent features
of the shifting balance theory that makes the peak shift a slow and constrained
process is the necessity to spread the new adaptive combination of genes from a
local subpopulation to the rest of the population. During this stage new combina-
tions of genes have to ‘‘compete’” with the old ones that outnumber the former.
(Haldane [1959] was one of the first to raise criticism of the shifting balance
theory of this ground.) Founder effect speciation avoids this difficulty by simply
removing the necessity for the new combination to take over: a local subpopula-
tion grows to become a new species without interacting with the ancestor one.

The proponents of these theories proposed only verbal schemes without trying
to formalize them. Later, formal analyses of founder effect speciation using ana-
lytical models and numerical simulation were undertaken in Charlesworth and
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Smith (1982), Barton and Charlesworth (1984), Rouhani and Barton (1987), and
Charlesworth and Rouhani (1988) and were summarized in Barton (1989). The
general conclusion of these analyses is that a founder event cannot result in a
sufficiently high degree of reproductive isolation with a sufficiently high probabil-
ity to be a reasonable explanation for speciation. Barton (1989, p. 252) concludes
his article by saying that ‘‘there are strong theoretical arguments that the particu-
lar genetic models of founder effect speciation put forward by Mayr, Carson and
Templeton are unlikely to be effective.”” This view seems to have been accepted
widely. For example, a review in Nature says with reference to Barton (1989)
that ‘‘a major problem with founder-effect theories is that they do not seem to
work when their verbal assumptions are transformed into mathematical models’’
(Coyne 1992, p. 514).

These conclusions are based on a biological interpretation of the results of
analyses of some mathematical models. Any mathematical model of a complex
biological process necessarily incorporates simplifying assumptions. The history
of mathematical modeling (both in biology and other sciences) shows that relaxing
or changing these assumptions can and often does result in dramatic changes in
the predictions and conclusions based on the model. Within the framework of
the standard population-genetics model, the most crucial assumption concerns
relationships between genotype and fitness (i.e., the genetic basis of reproductive
isolation and adaptation). Although numerous, the above cited articles with math-
ematical models for both the shifting balance process and founder effect specia-
tion have considered primarily only two different fitness schemes. The first is
selection on a single diallelic locus with heterozygotes having fitness smaller
than both homozygotes. The second is disruptive (bimodal) selection on a single
additive quantitative character. An inherent feature of these two models is that
the fitness of hybrids is about the same as the fitness of the ‘‘worst’’ state a
population has to pass through on its way from one equilibrium to another. Using
the metaphor of adaptive landscapes, we might say that the depth of the adaptive
valley that the population has to cross is approximately equal to the degree of
reproductive isolation arising from the peak shift (see fig. 14). Stochastic transi-
tions across deep adaptive valleys are very unlikely; hence, the emergence of a
highly reproductively isolated new species in a single step is unlikely as well.

Reproductive isolation has a complex, and largely unknown, genetic basis.
Models analyzed in the articles cited above represent only a tiny proportion of
possible models. An alternative scenario of evolution of reproductive isolation is
based on the model proposed by T. H. Dobzhansky almost 60 yr ago (Dobzhansky
1937). His original model considers a two-locus, two-allele population initially
monomorphic for a genotype, say aaBB. This population is broken up into two
geographically isolated parts. In one part, mutation (and possibly selection)
causes substitution of a for A, and a local race AABB is formed. In the other
part, mutation (and possibly selection) causes substitution of B for #, which gives
rise to a local race aabb. It is assumed that there is no reproductive isolation
among genotypes AABB, AaBB, and aaBB and among genotypes aaBB, aaBb,
and aabb, but genotypes AABB and aabb are considered to be reproductively
isolated. In this scheme, strong selection against hybrids between races with the
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Fic. 1.—Fitness landscapes with two peaks, where X and Y are some genotypic character-
istics inherited additively (i.e., X and Y values of a hybrid are half of the sum of the corre-
sponding values of parents). A, Fitness landscape describing a situation when the fitness of
F, hybrids is about the same as the fitness of the ‘‘worst’’ state that the population has to
pass through on its way from one peak to another. B, Fitness landscape describing a situation
when the fitness of F| hybrids is much less than the fitness of the ‘‘worst’’ state that the
population has to pass through on its way from one peak to another.



GENETIC REVOLUTIONS 471

genotypes AABB and aabb can be achieved, even though selection acting during
the evolutionary divergence is weak. The scenario of evolution of reproductive
isolation based on Dobzhansky’s model assumes that the population moves from
one adaptive peak to another without descending to the very bottom of the adap-
tive valley separating those peaks but following a rim connecting those peaks.
This scenario utilizes the idea that when the population is characterized by more
than one variable, the depth of the adaptive valley that the population has to
cross can be completely unrelated to the degree of reproductive isolation arising
from the peak shift (see fig. 1B). Different properties of models utilizing the
same idea have been discussed and formally studied (see, e.g., Bengtsson and
Christiansen 1983; Nei et al. 1983; Bengtsson 1985; Barton and Bengtsson 1986;
Wagner et al. 1994). These models, however, were dismissed by Barton and
Bengtsson (1986), who argued that the ‘‘Dobzhansky model, and similar schemes,
would not in fact produce much reproductive isolation’ (p. 370) because they do
not result in a sufficiently strong barrier to gene exchange between the popula-
tions. This view was reiterated in subsequent publications (see, e.g., Barton and
Rouhani 1987; Barton 1989), with a strong emphasis that this conclusion does not
depend on genetic details.

The main purpose of this report is to propose simple Dobzhansky-type models
of founder effect speciation. In these models, the resulting reproductive isolation
(as measured by the proportion of inviable F, hybrids or the strength of the
barrier to gene exchange between populations) can be very high and can evolve
with a high probability. We will describe multilocus population-genetics models,
quantitative genetics models, and models considering both major loci and quanti-
tative traits simultaneously. The mathematical models that we will study are
closely related to the verbal schemes of Mayr’s (1954) ‘“‘genetic revolutions,”
Carson’s (1968) founder-flush process, and Templeton’s (1981) genetic transi-
lience. We conclude that in certain cases, founder effect speciation is plausible.

BASIC FRAMEWORK

In the following sections, we will consider a series of models of evolution of
reproductive isolation according to the scenario of founder effect speciation.
These models will be constructed in such a way that their deterministic versions
(corresponding to very large population sizes) have two (or more) simultaneously
stable polymorphic equilibria. We will start by considering a very large population
at one of these equilibria. We will assume that a new population is founded by a
few individuals chosen randomly from this ancestral population. After the found-
ing event, the population size rapidly approaches a very large value, at which
all stochastic effects on allele frequencies effectively cease, and a deterministic
description of the dynamics becomes appropriate again. During a brief period of
relatively small population size, stochastic fluctuations may dramatically change
the genetic structure of the population, which may result in a peak shift, that is,
in the population settling down to an equilibrium different from the initial one.
We will be interested in the ability of a single founder event to cause strong
reproductive isolation. Strong reproductive isolation will be incorporated in the
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models by positing that some of the hybrids between populations at different
equilibria have zero fitness, that is, are inviable (see Nei et al. 1983). The degree
of reproductive isolation between two populations will be characterized by the
proportion of inviable (i.e., zero fitness) hybrids, 1. Obviously, I lies between
zero and one, with higher values corresponding to higher degrees of reproductive
isolation. Other measures of reproductive isolation and their relationship to I will
be discussed later.

Using a combination of simple analytical approximations and numerical simula-
tions, we will study the probability of a single founder event to cause a peak
shift, P, the degree of reproductive isolation corresponding to this shift, Z; and
the time that it takes for this isolation to evolve, T. In modeling the founder effect
speciation process, we will follow previous work (Rouhani and Barton 1987;
Charlesworth and Rouhani 1988), assuming that the process has two phases:
stochastic and deterministic. The stochastic phase lasts during the time interval
that it takes the population size to reach some specified value N,,,. This value,
Noax» 18 considered to be large enough that in populations with larger sizes, all
stochastic effects on allele frequencies effectively cease on the time scale of, say,
thousands of generations. The population size increases deterministically with a
geometric rate R:N, = R'N,, where ¢ is the generation number and N, is the
size of the founder population. When we use numerical simulations to compute
the dynamics of allele frequencies during the stochastic phase, these simulations
will be based on the discrete Fisher-Wright binomial scheme allowing for selfing
(see Charlesworth and Rouhani 1988). To simplify comparison with previous
results, we will consider the numerical values of N, (2, 4, and 8) and R (1.1, 1.3,
1.5, and 2) to be the same as used in Charlesworth and Rouhani (1988), N, is
1,000 (intermediate between N, = 150 used in Rouhani and Barton 1987, and
Npax = 10,000 used in Charlesworth and Rouhani 1988).

GENETICS MODELS

In this section, we will present several two- and three-locus models of the
evolution of strong reproductive isolation following a single founder event. An
important feature of these models is that the fitness of individuals with more than
one heterozygous locus is postulated to be zero. We will compare these models
among themselves and with a simple one-locus model.

One-Locus Model

We begin by considering a simple one-locus, two-allele model in which homo-
zygotes are equally fit, while heterozygotes have zero fitness (see fig. 2). We
assume that forward and backward mutation rates are equal and very small. This
model has two simultaneously stable equilibria, with genetic variability main-
tained by mutation. At these equilibria, the frequency of a rare genotype (AA or
aa) is approximately p?, where p is the mutation rate (n << 1). Let us imagine
two large populations at different equilibria and consider the first-generation hy-
brids. Most of them will be heterozygotes and will not survive. The proportion
of those that survive will be approximately 2. Thus, on the average, the degree
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Fic. 2.—Fitnesses of three genotypes in the one-locus, two-allele model with inviable
heterozygote and equally fit homozygotes. The genotypes common at two equilibria are
shown with black circles.

of reproductive isolation as measured by the proportion of inviable hybrids, I,
equals

I=1-2pn

and is very high. For example, with p > 1076, only one of a billion matings
would produce viable progeny.

How probabile is it for a single founder event to result in such a high degree of
reproductive isolation? Let a new population be founded by N, individuals chosen
randomly from the population, with allele A in common. With probability N,p.?
it has a single individual with genotype aa, and one can disregard the chance that
there is more than one such individual. At the end of the stochastic phase, the
population may be fixed for the common genotype, may remain polymorphic, or
may be fixed for the initially rare genotype. The first and last outcomes corre-
spond to the return of the population to its initial equilibrium and to the peak
shift, respectively. In the second case, the deterministic (i.e., very large) popula-
tion returns to its initial state or moves to the new equilibrium depending on
whether the frequency of genotype AA is greater or less than 0.5. The probability
of a peak shift as a result of a single founder event is approximately

P = UN()MZ,

where u is the probability that the frequency of genotype aa, which was present
by a single copy in a founder population, is bigger than 0.5 at the end of the
stochastic phase (including the probability that it is exactly one). This probability
~ depends on the growth rate R and the size of the founder population N,. If N,
= 2, then from the symmetry considerations, it follows that u# should be exactly
0.5. Table 1 illustrates how probable the peak shift is for some other parameter
combinations. The values in this table were computed numerically using a proce-
dure described in the previous section. With N, = 4, u becomes extremely small
(see table 1); with N, = 8, the only observed outcome is fixation of allele A.
Table 1 also reflects a well-known fact (see, e.g., Holgate 1966; Daley et al.
1982) that rapidly growing populations can preserve genetic variability. Both the
proportion of viable hybrids and the probability of stochastic transition are very
small. In this model, the evolution of strong reproductive isolation as a result of a
founder event is extremely unlikely. However, if it happens, it only takes several
generations.
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TABLE 1

SIMULATED FREQUENCIES OF DIFFERENT STATES OF THE ONE-Locus
POPULATION AT THE END OF THE STOCHASTIC PHASE WHEN THE
Founper PopuLaTiON OF Sizeé Ny Has A SINGLE GENOTYPE aa

Ny =2 Ny, = 4
R A a Poly A a Poly
1.1 25,235 24,765 0 49,704 296 0
1.3 24,956 25,043 1 49,875 125 0
1.5 24,808 25,186 9 49,962 38 0
2.0 24,062 24,290 1,648 49,994 2 4

Note.—In all cases, the number of runs is 50,000. A and a stand
for fixation of alleles A and a, respectively; poly denotes a situation
when the population remains polymorphic; wyy = wy, = 15 wy,

Two-Locus Models

Initial variability maintained by mutation.—Let us consider a two-locus, two-
allele model in which the double heterozygote has zero fitness, two homozygotes
have maximum fitness, and other genotypes have slightly reduced fitness (see fig.
3A, in which 0 < 5, 5, < 1). We assume that forward and backward mutation
rates in both loci are equal to p and are much smaller than s,, s,. This model
has two simultaneously stable equilibria, with genetic variability maintained by
mutation. At each of these equilibria, one allele at each locus is common and
another is rare, with the frequency w/s;. After selection, a homozygous genotype
(AABB at one equilibrium or aabb at another equilibrium) is close to fixation,
genotypes heterozygous at one locus have a low frequency p/s, + p/s,, and all
other genotypes have even lower frequencies. Linkage disequilibrium is very
small (see, e.g., Hastings 1988). Let s, = s, = 5. Let us imagine two large
populations at different equilibria and consider the first-generation hybrids. Most
of them will be double heterozygotes and will not survive. Among those that
survive, the most common will be a product of matings between homozygotes
common in one population and single-locus heterozygotes from another popula-
tion whose frequency is approximately 4u/s. Thus, the degree of reproductive
isolation is

I=1-4pls.

For example, if p. = 10"%and s = 0.025, then 99.984% of hybrids will be inviable.

How probable is it for a single founder effect to result in such a high degree of
reproductive isolation? Let a new population be founded by N, individuals chosen
randomly from a population with genotype AABB common. With the probability
2N,p/s, it has a single copy of a rare allele, say, a, and one can disregard the
chance that there is more than one rare allele in the founder population. During
the period of rapid growth, new mutation can be neglected and stochastic factors
are the most important. At the end of this period, the population may be fixed
for the initially common allele A, may remain polymorphic, or may be fixed for
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TABLE 2

SIMULATED FREQUENCIES OF DIFFERENT STATES OF THE ONE-Locus POPULATION AT THE END OF THE
StocHasTIC PHASE WHEN THE FOUNDER PopuLATION OF SizE N, Has A SINGLE CoPY OF ALLELE a

Ny =2 N, = 4 N, = 8
R A a Poly A a Poly A a Poly
1.1 7,115 2,207 678 7,813 453 1,734 8,026 13 1,961
7,457 1,864 679 8,222 291 1,487 8,379 8 1,613
7,782 1,626 592 8,602 183 1,215 2,134 0 7,866
1.3 4,924 532 4,544 5,328 7 4,565 5,585 0 4,415
5,260 397 4,343 5,666 4 4,330 5,935 0 4,065
5,590 341 4,069 6,051 1 3,948 8,804 0 1,196
1.5 3,391 85 6,524 3,789 0 6,211 3,996 0 6,004
3,636 69 6,295 4,042 0 5,958 4,218 0 5,782
3,807 62 6,131 4,333 0 5,667 6,136 0 3,864
2.0 1,598 0 8,402 1,728 0 8,272 1,929 0 8,071
1,686 2 8,312 1,910 0 8,090 1,970 0 8,030
1,925 2 8,073 2,134 0 7,966 2,198 0 7,802

Note.—In all cases, the number of runs is 10,000. Here, A and a stand for fixation of alleles A
and a, respectively, while poly denotes a situation when the population remains polymorphic. For
each value of the population growth rate, R, the upper, medium, and lower lines correspond to w4,
= Wy, = W, = 1(no selection); wyy = 1, wy, = 0.975, w,, = 0.95;and wy, = 1, wy, = 0.95, w,,
= 0.9, respectively.

the initially rare allele a. In the first two cases the deterministic (i.e., very large)
population will return to its initial equilibrium. Let us consider the case when the
population becomes fixed for the initially rare allele a. Now all individuals have
genotype aaBB. When the population size is very large, random drift becomes
unimportant but mutation begins to play its role. The state describing a population
monomorphic for genotype aaBB does not represent an equilibrium. With equal
probabilities, one-half mutation will move the population back to its initial state
(with genotype AABB common) or to the new equilibrium (with genotype aabb
common). Note that introducing a small asymmetry into the model (e.g., by
assuming that fitness of genotype aabb is 1 + €, where € is an extremely small
number) can cause mutation to always move the population to the new equi-
librium.

In this model, the probability of peak shift as a result of a single founder event
can be represented as

P = uNypnl/s,

where u« is now the probability of the fixation of an allele that was present by a
single copy in a founder population of size N,. This probability depends on the
growth rate R. Note that in this model, the probability of peak shift is proportional
to p and thus is much higher than in the one-locus model in which the probability
was proportional to w2

Table 2 illustrates the plausibility of different events during the stochastic phase
for some parameter combinations. The probability of the evolution of strong
reproductive isolation via a single founder event is much higher than in the one-
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locus model considered above, but its absolute value still is small. For example,
ifNg=2,R=1.1,n=10"%and s = 0.02, thenP = 1.5 X 107°.

One can also estimate the time that it takes for strong reproductive isolation
to evolve. The process has two steps: a stochastic one and a deterministic one.
The latter corresponds to deterministic changes in the frequency of allele b caused
by selection and mutation, and it is much longer than the former. The time that
it takes for selection and mutation to change the allele frequency from 0% to 99%
is approximately T = 300 generations when s = 0.05 and T = 600 generations
when s = 0.025 (with . = 107°). These values of T were estimated numerically
by iterating a single equation describing the dynamics of allele frequency in a
single diallelic locus under selection (with fitnesses 1 — 2s:1 — s:1) and muta-
tion. Thus, in this two-locus model, a single founder event can initiate the evolu-
tion of strong reproductive isolation that will be completed on the time scale of
several hundred generations. Increasing the strength of selection and/or mutation
rate will result in increasing the rate of evolution.

Initial variability maintained by balancing selection.—In the model just consid-
ered, the probability of peak shift mostly depends on the amount of genetic vari-
ability present in the ancestor population. Genetic variability in this model was
maintained by mutation, and, as a consequence, both the initial genetic variability
and the probability of a peak shift were small. Balancing selection can maintain
much higher levels of variability and can, presumably, make peak shifts more
plausible. Let us consider a two-locus, two-allele model defined in figure 3B in
which s,, s, are small positive values. This model has two types of equilibria: an
equilibrium in which genetic variability is maintained by overdominance in locus
A and by mutation in locus B and two equilibria with rare alleles in both loci
maintained by mutation. Let s, = s,. At the equilibrium of the first type, common
genotypes are AABB, AaBB, and aaBB (with the frequencies approximately in
the proportions 1:2:1). At two equilibria of the second type, common genotypes
are AAbb or aabb. The proportion of viable hybrids resulting from matings be-
tween populations at equilibria of different types is approximately one-half. This
value corresponds to the proportion of matings that result in offsprings homozy-
gous in locus A and heterozygous in locus B. Thus, in this model

I=05.

Let a new population be founded by N, individuals chosen randomly from a
population at an equilibrium of the first type. With a very high probability (equal
approximately to 1 — ), it is monomorphic for allele B. The system can be
considered as a single-locus system (with three different genotypes—AA, Aa,
and aa). During the period of rapid growth, new mutation can be neglected, and
random drift is very important. At the end of this period, the population may be
monomorphic or remain polymorphic. In the latter case, the deterministic (i.e.,
very large) population will return to its initial equilibrium. In contrast, a mono-
morphic population will be driven to a new equilibrium by mutation and selection.

Table 3 illustrates the plausibility of different events during the stochastic phase
for some parameter combinations. If both selection and the growth rate are very
small (i.e., if s = 0 and R = 1), the standard theory says that fixation occurs with
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TABLE 3

SIMULATED FREQUENCIES OF DIFFERENT STATES OF THE ONE-Locus
POPULATION AT THE END OF THE STOCHASTIC PHASE WHEN THE
FounDER PoPULATION OF SizE Nj Is DRAWN FROM AN INFINITE
POPULATION WITH THE FREQUENCY OF ALLELE A EQUAL TO 0.5

NO = 2 No = No = 8

R Fix Poly Fix Poly Fix Poly
1.1 9,033 967 6,050 3,950 2,273 7,727
8,771 1,229 5,167 4,833 1,472 8,528

8,490 1,510 4,509 5,491 986 9,014

1.3 4,021 5,979 1,012 8,988 72 9,928
3,713 6,287 844 9,156 42 9,958

3,384 6,616 665 9,335 22 9,978

1.5 1,710 8,290 191 9,809 2 9,998
1,525 8,475 152 9,848 2 9,998

1,346 8,654 118 9,882 3 9,997

2.0 249 9,751 4 9,996 0 10,000
235 9,765 3 9,997 0 10,000

230 9,770 0 10,000 0 10,000

Note.—In all cases, the number of runs is 10,000. Fix denotes a
situation when at the end of the stochastic phase the population is
monomorphic, while poly denotes a situation when the population
remains polymorphic. For each value of the population growth rate,
R, the upper, medium, and lower lines correspond to wyy = wy, =
wg = 1 (no selection); wy, = 1, wyy = wy, = 0.95;and wy, = 1,
Wy, = Wa = 0.9, respectively.

[

a very high probability:
P=1.

Table 3 also shows that rapidly growing populations can preserve genetic variabil-
ity (cf. Holgate 1966; Daley et al. 1982). The time scale for the evolution of
reproductive isolation in this model is the same as in the previous model, which
is several hundred generations.

A Three-Locus Model

The first of the two-locus models that we described in the previous sections
produces a high degree of reproductive isolation (with I = 1 — p/s) but with a
low probability (P ~ w/s). In the second two-locus model, the probability of
stochastic transition can be almost one, but the degree of reproductive isolation
is far from complete (with I = 0.5). In this section, we describe a three-locus
model that combines these two two-locus models, inheriting the high degree of
reproductive isolation from the first and the high probability of stochastic transi-
tion from the second. We assume that individuals with two or three heterozygous
loci are inviable. The fitnesses of genotypes that are important in our analyses
are described in figure 4.

This model has two types of equilibria: an equilibrium in which genetic variabil-
ity is maintained by overdominance in locus A and by mutation in loci B and C



GENETIC REVOLUTIONS 479

143s

Fic. 4.—Fitnesses of some genotypes in a three-locus, two-allele model with inviable
double and triple heterozygotes. The genotypes common at two equilibria are shown with
black circles.

and an equilibrium with rare alleles in all three loci maintained by mutation. At
the equilibrium of the first type, common genotypes are monomorphic in allele
B and C and polymorphic at the first locus (with the frequencies of AA, Aa, and
aa approximately in the proportions 1:2:1). At the equilibrium of the second
type, common genotypes are aabbcc. Frequencies of rare genotypes in both
populations will be order w/s. Let us consider the first-generation hybrids be-
tween populations at equilibria of different types. Matings between genotypes
that are common within their respective populations will result in individuals that
are heterozygous in both B and C loci. These individuals are inviable. The most
common viable offsprings will be a product of matings between a common geno-
type from one population and a rare genotype from another population. Thus,
the proportion of viable hybrids resulting from matings between populations at
equilibria of different types is roughly proportional to /s, and

I=1-0(ls),

where O(p/s) is a small value proportional to w/s. Let a new population be
founded by N, individuals chosen randomly from a population at an equilibrium
of the first type. With a very high probability (equal approximately to 1 — w), it
is monomorphic for alleles B and C. The system can be considered as a single-
locus system (with three different genotypes—AA, Aa, and aa). During the period
of rapid growth, new mutation can be neglected, and random drift is very impor-
tant. At the end of this period, the population may be monomorphic or remain
polymorphic. In the latter case, the population will return to its initial equilibrium.
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In contrast, a population monomorphic for allele a will be driven to the new
equilibrium by mutation and selection. Table 3 can be used to illustrate the plausi-
bility of different events during the stochastic phase for some parameter combina-
tions. If both selection and the growth rate are small (i.e., if s = 0 and R = 1),
the standard theory says that fixation occurs with a very high probability:

P=1.

One can also estimate the time that it takes for strong reproductive isolation to
evolve. As in the previous models, the process has two steps: a stochastic one
and a deterministic one. The latter corresponds to deterministic changes in the
frequencies of alleles » and ¢ caused by selection and mutation and is much
longer than the former. The time that it takes for selection and mutation to change
these allele frequencies from 0% to 99% is approximately T = 1,200 generations
for s = 0.05 and T = 600 generations for s = 0.025 (with & = 107%). These
values of T were estimated numerically by iterating a standard system of equa-
tions describing the dynamics of gamete frequencies in a two-locus, two-allele
system under selection and mutation. Thus, in this three-locus model, a single
founder event may result in strong reproductive isolation on a time scale of
several hundred generations. Increasing the strength of selection and/or mutation
rate will result in increasing the rate of evolution.

In the two- and three-locus models considered in this section, genetic drift
accompanying the founding event can result in a complete loss of genetic variabil-
ity in one locus that in turn would completely change selection pressure on an-
other major locus (or loci), which would cause the population to evolve to a new
state. Without providing the details, we easily may see how to extend this argu-
ment to more loci. These models can be considered as describing Mayr’s (1954)
genetic revolutions.

QUANTITATIVE GENETICS MODELS

Barton and Charlesworth (1984), Rouhani and Barton (1987), Charlesworth and
Rouhani (1988), and Barton (1989) have studied peak shifts in founder populations
using models of disruptive selection on a single quantitative character. They as-
sume a specific form of fitness function, which results in two adaptive peaks, and
analyze how the probability of peak shift and the resulting degree of reproductive
isolation depend on different parameters. One of their main results is that in this
model the probability of a peak shift that induces a significant degree of reproduc-
tive isolation is very small. These authors consider this to be a major objection
to the founder effect speciation theory. In this section, using a heuristic argument,
we show that analyses given by these authors can be used to argue that a single
founder event may result in strong reproductive isolation with a high probability.
The basic idea is to introduce an additional quantitative trait (or traits) and con-
struct a Dobzhansky-type model similar to those presented in the previous sec-
tion. Let us consider the model studied by Charlesworth and Rouhani (1988).
These authors model a single additive trait, z, controlled by a large number of
unlinked loci with individually small effects. The distribution of z in the popula-



GENETIC REVOLUTIONS 481

tion is assumed to be normal. The relationship between fitness w, of an individual
and its phenotypic value z is described using a sum of two Gaussian functions:

WI(Z) = 0-5 exp<—£z—2—t—1—)2> + 0.5 exp<___(_z____l_£> .

w? 2w?

This fitness function has two maxima located at z trait values of —1 and 1, with
the maxima separated by a valley with a depth proportional to » '

Let a new population be founded by N, individuals chosen randomly from a
large population at one of these peaks. At the end of the period of rapid growth,
the population may remain in the domain of attraction of the initial peak or may
be in the domain of attraction of the new peak. Charlesworth and Rouhani (1988)
have shown (e.g., see their fig. 3) that following a founder event, stochastic shifts
between two peaks have a high probability (of order of tens of percentages)
provided w = 0.9. Let us introduce an additional quantitative trait, y, uncorrelated
with z, that is under Gaussian stabilizing selection with optimum zero and

strength y:.
2
y
wo(y) = exp<~—2> .
2y

Let the fitness of individuals with trait values z and y be w(z, y) = w,(2) w,(y).
The resulting fitness function still has two maxima located at (—1, 0) and (1, 0)
on the (z, y) plane (see fig. SA). The existence of an additional trait should not
strongly influence the probability of peak shift, and numerical results of
Charlesworth and Rouhani should be approximately true in this case too. Let
us make the fitness function more complex by introducing epistatic interactions
between the traits in determining fitness, as shown in figure SB. This fitness
scheme assumes that the selection on a trait changes from stabilizing to disruptive
depending on the other trait value. Such changes and even more complex selec-
tion regimes should be common when the fitness function has multiple peaks. In
figure 5B the fitness function has two new peaks at (—1, —1) and (-1, 1), and
the point (—1, 0), which was a peak in figure SA, has become a saddle. Provided
v < o, the new peaks are separated by a deep valley from the old peak at (I,
0). This means that in this model with a probability equal approximately to the
corresponding numerical values in Charlesworth and Rouhani (1988), the popula-
tion starting at the peak at (1,0) will end up on a new adaptive peak separated
from the initial one by a very deep adaptive valley. The hybrids between initial
and final populations will have extremely low fitness, and two populations will
be strongly reproductively isolated. For example, if ® = 0.9 and v = 0.01, the
fitness of hybrids between individuals most common at their respective popula-
tions lying at different axes is approximately 7 x 107°, If w = 0.9, the probability
of such a peak shift is on the order of one in 10 or greater.

Charlesworth and Rouhani (1988) do not present numerical values for the time
that it takes to approach a new equilibrium after crossing the adaptive valley.
However, presumably it should be much shorter (on the time scale of dozens of
generations) than in the multilocus models that we considered in the previous
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Fi6. 6.—Fitness landscape describing ‘‘directional’’ selection wy(x, y) on two quantitative
traits. In this model, the movement toward an adaptive peak will follow a ‘‘rim’’ that goes
around a deep ‘‘adaptive valley.”

section in which new variability was supplied by mutation. We conclude that in
this and similar models, strong reproductive isolation can rapidly evolve with a
high probability. In quantitative genetic models that consider many loci with
minor effects on fitness, genetic drift becomes more important than selection in
a rapidly growing population and is able to move the population to the domain
of attraction of a new state. This process requires that during the stochastic
phase, the level of genetic variability remains large enough. This class of models
can be considered as related to Carson’s (1968) founder-flush model.

MAJOR AND MODIFIER LOCI

The models that we described in the two previous sections can be combined
~ to produce models incorporating both major loci and quantitative traits simulta-
neously in a way similar to that used in Petry (1982) and Lande (1983). As an
example, let us take the three-locus model analyzed above and modify it in the
following way. Assume that individuals are different with respect to a major
diallelic locus (with alleles A and @) and two quantitative traits z and y (which
take the place of the loci B and C in the three-locus model). Let heterozygous
individuals Aa have fitness w(z, y,) while homozygous individuals AA and aa
have fitness (1 — s)wpon(z, ¥). Assume that wy.(z, ¥) describes stabilizing selec-
tion on z and y, with both optima at zero. Let wy,(z, y) define directional selec-
tion of the form described in figure 6.

Provided s is not very small and stabilizing selection acting on heterozygotes
is sufficiently strong relative to directional selection acting on homozygotes, this
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model has a stable equilibrium with the frequency of A equal to 0.5 and the mean
values of z and y slightly displaced from zero. If a population at this state under-
goes a bottleneck, with a high probability (see table 3), all variability in the major
locus will be lost, which will result in a complete change in selection pressure on
quantitative traits z and y. As a consequence, the population will evolve along
the rim described in figure 6 to a new state that will be highly reproductively
isolated from its initial state. The time scale of this evolution will be about the
same as in the quantitative genetics models discussed in the previous section
(i.e., of order of dozens of generations). In this model considering both major
and minor loci simultaneously, genetic drift can result in a complete loss of ge-
netic variability in a major locus, which in turn will result in a complete change
in selection pressure on the minor loci and will cause the population to evolve to
a new state. This class of models is related to Templeton’s (1981) genetic transi-
lience model.

DISCUSSION

Any genetic model of the evolution of reproductive isolation includes two basic
components: one describing the genetic basis of reproductive isolation and a
second specifying a mechanism that causes emergence of a new population repro-
ductively isolated from its ancestor. Important characteristics of such a model are
the degree of resulting reproductive isolation, overall plausibility of emergence of
isolation, and the time that it takes for a given level of reproductive isolation to
evolve.

Modeling the Genetic Basis of Reproductive Isolation

The genetic basis of reproductive isolation and differences among closely re-
lated species is complex and largely unknown. We do know that both major and
minor loci can be involved, and epistasis in fitness is present (see discussions
and references in Barton 1989; Orr and Coyne 1992; Wagner et al. 1994). Our
analysis of the evolution of postzygotic reproductive isolation has been limited
by the assumptions of the standard population-genetics model listed at the begin-
ning of this article. Within the framework of this model, the genetic basis of
reproductive isolation is specified by the relationship between genotype and fit-
ness. Previous mathematical models of the evolution of reproductive isolation
(cited above) have primarily considered two different fitness schemes: selection
on a single diallelic locus with underdominance and disruptive selection on a
single additive quantitative character. An inherent feature of these two models is
that the fitness of hybrids is about the same as the fitness of the ‘‘worst’’ state a
population has to pass through on its way from one equilibrium to another. As a
consequence, in these models the depth of the adaptive valley that the population
has to cross is approximately equal to the degree of reproductive isolation arising
from the peak shift.

In this article, we have considered different models utilizing Dobzhansky’s
(1937) idea that strong selection against hybrids between two genotypes can occur
simultaneously with the existence of a chain of genotypes that connect those two
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and differ only weakly in fitness among themselves. Using the metaphor of adap-
tive landscapes, we find that in Dobzhansky-type models, a rim connecting two
adaptive peaks goes around a deep adaptive valley (see figs. 1B, 5B, 6). Other
properties of models utilizing the same idea have been discussed and formally
studied (see, e.g., Bengtsson and Christiansen 1983; Nei et al. 1983; Bengtsson
1985; Barton and Bengtsson 1986; Wagner et al. 1994).

In this article, we considered three different classes of Dobzhansky-type mod-
els: a few loci with major effects on fitness, many loci with small effects on
fitness, and both major and minor loci simultaneously. In all cases, there was
epistasis in fitness, and the viability of some genotype was extremely small or
zero. The latter assumption represents a major difference from most previous
models of the evolution of reproductive isolation considering mainly weak selec-
tion (but see Nei et al. 1983). Strong selection seems to be quite common in
natural populations (Endler 1986). Strong selection should be certainly incorpo-
rated in any model attempting to describe the evolution of strong postzygotic
isolation when some hybrids are inviable. Assuming strong selection instead of
weak selection in population-genetics models can result in drastic changes in
conclusions (for examples, see Gavrilets 1993; Gavrilets and Hastings 1993,
19944, 1994b).

Measuring the Strength of Reproductive Isolation

In this article, the strength of reproductive isolation between two populations
has been measured using a simple and intuitively clear measure—the proportion
of inviable F, hybrids, I. The I value is related to the mean fitness of F; hybrids,
Wwg,, with the obvious relation Wy, = 1 — I. The models considered above assume
that the fitness of some individuals is zero or very close to zero. In these models
only an extremely small proportion of matings between different populations re-
sult in viable F; hybrids, and the initial reproductive isolation is very high. One
can argue, however, that when two populations initially at different ‘‘adaptive
peaks’ meet and exchange individuals over an extended period of time, even a
small amount of gene flow between them is sufficient to re-create all genotypes
along the rim connecting two peaks and, thus, significantly and rapidly reduce
the degree of reproductive isolation (Barton and Bengtsson 1986; Barton and

Rouhani 1987).
- In discussing consequences of prolonged hybridization on reproductive isola-
tion, one should first define an appropriate measure. A standard measure is to
consider how quickly two populations are losing differentiation in a neutral locus
(see, e.g., Nagylaki 1976, Barton 1979, 1986; Spirito et al. 1983; Bengtsson 1985;
Barton and Bengtsson 1986). Barton and Bengtsson (1986; see also Bengtsson
1985; Barton 1986) discuss a measure, b, of the strength of the barrier to genetic
exchange between hybridizing populations characterizing the ease with which a
neutral allele that initially is present in only one of the populations can ‘‘flow”’
across a stable hybrid zone into the population in which it was initially absent.
With a migration rate m between two populations, a neutral allele will be delayed
for =b/m generations (Barton and Bengtsson 1986). Barton and Bengtsson (1986)
consider a Dobzhansky-type model in which fitness depends exponentially on the
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TABLE 4

MUMBER OF GENERATIONS THAT IT TAKES To REDUCE THE DIFFERENCE IN THE NEUTRAL ALLELE
FREQUENCIES TO HALF OF ITs INITIAL VALUE

RECOMBINATION

RATE MODEL 1 MODEL 2
r R m = .003 m = .006 m = .030 m = .060
.50 .50 126 62 284 104
.05 .50 157 73 301 109
.50 .05 125 62 284 104
.05 .05 184 83 301 109
Neutral case 115 57 11 S

Note.—The fitnesses are as specified in fig. 4, with s; = 0.025 and s, = 0.05. In model 1, w,p,
= 0.95; in model 2, wy,g, = 0.

number of heterozygous loci. They find that in this model the strength of the
barrier to genetic exchange between hybridizing populations as measured by b is
weak in spite of the fact that the mean fitness of F, hybrids is small. This finding
has been used to argue that the barrier to gene flow across a hybrid zone should
depend primarily on the depth of the ‘‘adaptive valley’’ that the population has
to cross on its way from one equilibrium to another (Barton and Rouhani 1987)
and that the ‘‘Dobzhansky model, and similar schemes, would not in fact produce
much reproductive isolation’ (Barton and Bengtsson 1986, p. 370).

Let us imagine two large populations initially at two different equilibria con-
trolled by a balance between mutation and selection acting on two loci A and B.
Consider a third ‘‘neutral’’ locus C. We take the special order of loci to be ABC.
Let R be the recombination rate between the loci under selection A and B and r
be the recombination rate between B and C, and further assume that recombina-
tion occurs independently between the first, second, and third positions. Let one
neutral allele be fixed in one population but absent in the other. After individuals
begin to migrate between the populations, the difference in the frequency of the
neutral allele is expected to decay gradually. The rate of decay should depend
on the recombination rates, the migration rate m, and fitnesses. We are going to
compare two models. In the first model, the fitnesses are as defined in figure 3A.
The second model differs from the first one only in that the fitness of the double
heterozygote equals that of a low-fitness double homozygote AAbb (i.e., W 4,5,
= 1 — 2s,. These two models have the same depth of the ‘‘adaptive valley’’ that
the population has to cross on its way from one equilibrium to another, but they
result in different fitnesses of F| hybrids. The strength of the barrier to genetic
exchange between hybridizing populations, b, is meant as a measure related to
the rate of decay of the difference in the frequencies of the neutral allele. In table
4 we compare the time that it takes to reduce the difference between the frequen-
cies of the neutral allele in two populations to half of its initial value in these two
models for some parameter values. Also given are the values corresponding to a
neutral model—that is, to a model with no selection on A and B loci. (These
values and data presented in table 4 were found using numerical iteration of
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corresponding dynamic systems.) In model 2, for m = 0.003 and m = 0.006,
after a short transient period, no changes in the neutral allele frequency were
observed during at least 200,000 generations. In model 1, for m = 0.03 and m =
0.06, the cline in the frequencies of alleles in loci A and B is not stable, and the
whole system moves to one or another equilibrium state. This and table 4 show
that strong selection against double heterozygotes significantly reduces or even
completely prevents the gene flow of neutral alleles between populations. As
expected, the amount of recombination between the loci under selection does not
influence the outcome if a double heterozygote is inviable, and increasing the
linkage between the neutral and selected loci increases the strength of the barrier
to the gene flow.

The measure b for the strength of reproductive isolation was defined for situa-
tions when two populations remain differentiated in spite of the gene flow between
them. If the migration rate increases above some critical value, m_, this differenti-
ated state in general can become unstable, and the whole system moves to one
or another equilibrium state (i.e., the genetic barrier between two populations
collapses). The critical value m, can be used as an alternative measure of the
degree of reproductive isolation between two populations that characterizes the
ability of two populations to remain differentiated in spite of the gene flow be-
tween them. If m, is small, negligible gene flow is sufficient to destroy genetic
differentiation, while if m_ > 0.5, two populations can remain differentiated even
in sympatry. The value of m, is expected to be small, which reflects the power
of migration over selection (Barton 1992; Gavrilets 1994). Let us consider a two-
locus model with fitnesses as in figure 3, with s; = 0.025 and s, = 0.03. Numerical
simulations show that if w,,z, = 0.95, then m_ is approximately 6.7 x 1073,
while if the double heterozygote is inviable, m, is approximately 1.2 x 1072,
Although this difference is not very impressive, nonetheless it shows that Dob-
zhansky-type models can have higher values of m_ as well.

Properties of genetic barriers in Dobzhansky-type models can be influenced by
many factors, including the spatial arrangement of populations, and should be
studied in more detail. Our preliminary study, however, allows us to conclude
that Barton and Bengtsson’s finding is not general and that Dobzhansky-type
models can produce strong reproductive isolation as measured by the proportion
of inviable F, hybrids or the strength of the barrier to the gene flow.

Genetic Revolution, Founder Flush, and Genetic Transilience

In this article, the dynamics of a series of Dobzhansky-type models have been
analyzed under the scenario of the theory of founder effect speciation (Mayr 1942,
1954; Carson 1968; Kaneshiro 1980; Templeton 1980). That is, we considered a
growing population founded by a few individuals, and we were interested in the
ability of a single founder event to result in strong reproductive isolation. The
models that we considered were different with respect to genetic details.

In models with several major loci, genetic drift accompanying the founder event
can result in complete loss of genetic variability in one locus, which in turn would
completely change the selection pressure on another major locus (or loci) and
cause the population to evolve to a new state. These models can be considered
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as describing Mayr’s (1954) genetic revolutions. In the quantitative genetic mod-
els that consider many loci with minor effects on fitness, genetic drift can become
more important than selection in a rapidly growing population and move the
population to the domain of attraction of a new state. A necessary condition of
this transition is that during the stochastic phase, the level of genetic variability
remains large enough. This class of models can be considered as related to Car-
son’s (1968) founder-flush model. In the models considering both major and minor
loci simultaneously, genetic drift can result in a complete loss of genetic variabil-
ity in a major locus, which in turn would result in complete change in selection
pressure on the minor loci and cause the population to evolve to a new state.
This class of models is related to Templeton’s (1981) genetic transilience model.
The time scale for the evolution of strong reproductive isolation in these models
depends on the genetic details and can be as small as several hundred or even
several dozen generations. We have shown that in all these models, very strong
reproductive isolation can evolve with a high probability.

Relation to Other Models

The classic view is that reproductive isolation evolves as a side effect of genetic
changes. Genetic changes can be induced by many factors and their combina-
tions. In comparing the theory of founder effect speciation with alternative theo-
ries, two somewhat trivial points should be kept in mind. Obviously, it is quite
plausible that the founder population is exposed to a different physical or biotic
environment and, as a consequence, experiences a selection pressure different
from that one acting on the ancestor population. The first point is that the scenario
underlying this theory (as well as the shifting balance theory) allows for reproduc-
tive isolation to evolve even when the overall selection pressure does not change.
The second point is that after a founder event, strong reproductive isolation can
evolve very rapidly, on the time scale of dozens or hundreds of generations, with
a high probability. This is in contrast to stochastic models of stable populations
in which even in Dobzhansky-type models, strong reproductive isolation evolves
very slowly (e.g., Nei et al. 1983; Wagner et al. 1994). The theory of founder
effect speciation is not supposed to explain all or most speciation events, but the
mechanism underlying this theory should be accepted as one of many mechanisms
acting in natural populations that can lead to speciation.

Experimental Evidence for Founder Effect Speciation

Experimental studies attempting to duplicate the founder effect process have
been recently reviewed by Rice and Hostert (1993) and A. R. Templeton (unpub-
lished manuscript), with diametrically opposite conclusions. Rice and Hostert
(1993) conclude that there is ‘little or no support’’ for this theory of speciation.
This conclusion is challenged by A. R. Templeton (unpublished manuscript), who
argues that it is flawed because in Rice and Hostert’s article the most relevant
experimental evidence was not considered, inconsistent criteria for evaluation
were used, and predictions of the theory were inaccurately portrayed. A. R.
Templeton (unpublished manuscript) concludes that ‘‘strong and extensive’’ ex-
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perimental evidence exists for at least some of the versions of the founder effect
speciation theory. The original articles should be consulted for more details.

CONCLUSIONS

In certain cases the mechanisms underlying the founder effect speciation theory
can definitely work. In particular, a high degree of reproductive isolation can be
achieved in Dobzhansky-type models. It seems that the appeal expressed in the
last sentence of Barton and Hewitt (1981, p. xx) still remains praiseworthy: ‘‘Per-
haps the way forward is to analyze in detail the differences between diverging
taxa, and to recognize that the various theories of speciation are not necessarily
mutually exclusive.”
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