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SUMMARY

Frequency-dependent selection is an important determinant of the evolution of gametophytic self-
incompatibility systems in plants, aposematic (warning) and cryptic coloration, systems of mimicry,
competitive interactions among members of a population, mating preferences, predator-prey and
host—parasite interactions, aggression and other behavioural traits. Past theoretical studies of frequency-
dependent selection have shown it to be a plausible mechanism for the maintenance of genetic variability
in natural populations. Here, through an analysis of a simple deterministic model for frequency-
dependent selection, we demonstrate that complex dynamic behaviour is possible under a broad range of
parameter values. In particular we show that the model exhibits not only cycles and chaos but also, for
a more restricted set of parameters, transient chaos and intermittency: alterations between an apparently
deterministic behaviour and apparently chaotic fluctuations. This behaviour, which has not been stressed
within the population genetics literature, provides an explanation for erratic dynamics of gene

frequencies.

1. INTRODUCTION

Frequency-dependent selection is a form of selection
where the fitness of an individual depends on the
genetic composition of the population to which it
belongs. Numerous examples of frequency-dependent
selection are well documented. In particular, this
form of natural selection is an important determinant
of the evolution of gametophytic self-incompatibility
systems in plants, aposematic (warning) and cryptic
coloration, systems of mimicry, competitive inter-
actions among members of a population, mating
preferences, predator—prey and host-parasite inter-
actions, aggression and other behavioural traits (see
references in Ayala & Campbell 1974; Clarke &
Partridge 1988). Frequency-dependent selection has
been widely considered in population genetics litera-
ture as a potentially important mechanism for main-
tenance of genetic variability in natural populations
(e.g. Cockerham et al. 1972; Clarke 1979 ; Asmussen &
Basnayake 1990).

Frequency-dependent selection has been also demon-
strated to be able to produce complex dynamics
behaviour including cycles and deterministic chaos in
allele frequencies. The best known example are models
describing co-evolution of host-parasite systems (e.g.
May & Anderson 1983; Seger 1988; Seger & Hamilton
1988). Cycles and chaos arise also in models of
frequency-dependent selection describing a single
species (May 1979; Hamilton 1980; Altenberg 1991;
Holton & May 1993). Unfortunately, the importance
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of nonlinear phenomena has not been well recognized
within the population genetics community.

The purpose of this note is to give additional
examples of chaotic dynamics that can be at least
potentially important in population genetics. Here we
study a simple deterministic population genetics model
of frequency-dependent selection describing a single
species. We present a complete analysis of conditions
for existence and stability of equilibria. We dem-
onstrate that complex dynamic behaviour is possible
under a broad range of parameter values. In particular
we show that the model exhibits not only cycles and
chaos, but also some of the most striking examples of
nonlinear behaviour: transient chaos and inter-
mittency. We give a very simple explanation of the
mechanisms underlying these dynamic regimes and
discuss their biological implications.

2. MODEL

We consider a deterministic model of a large
randomly mating diploid population with discrete
generations. We assume that there is a single diallelic
locus with alleles A and a. Let w,,, w,, and w,, be the
fitnesses (viabilities) of genotypes AA, Aa and aa,
respectively, and p be the frequency of allele A, with
¢ =1—p. Under Hardy-Weinberg equilibrium, the
frequencies of the three genotypes are p?, 2pg and ¢°.
The change in p in one generation is described by the
standard equation:

Ap = [p(w,—w)/w]. (1)
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Here w, = pw, , + qw,, is the average fitness of allele A
and @ = pPw, , + 2pquw ., + ¢*w,, is the mean fitness of
the population. If the fitnesses are constant, the
population gradually evolves to a polymorphic equi-
librium (with 0 <p <1) provided there is over-
dominance (i.e. if w,, > w,,,w,,) or to a fixation state
(withp = 0 or p = 1), otherwise. Frequency-dependent
selection is incorporated in this model by assuming that
fitnesses are not constant but depend on the genotype
frequencies. In the simplest case, the fitnesses are linear
functions of the genotype frequencies (Huang et al.
1971; Cockerham et al. 1972):

wyn = P Wia+ 20gWia+ ¢* Wi,
Wao = p*Wor +2pqWoo + ¢* W,
Waa = pzm/31+2pqw/32+q2m/;$3’
where W; are parameters (i,j = 1,2,3) characterizing
the extent to which changes in the frequencies of three
genotypes influence their fitnesses. (For examples of
models of frequency-dependent selection with non-
linear functions see Wright 1969; May 1979; Hamilton
1980). We introduce here a symmetric model of linear

frequency-dependent selection, where the matrix of the
coeflicients W, has form

d f «a
Yy on v
a B 0

Under this symmetric model, the dependence of
fitness of a heterozygote w,, on the allele frequency p is
described by a (quadratic) function symmetric about 3,
whereas w,, and w,, considered as (quadratic)
functions of p are reflections of each other about 3. The
main justification for the symmetry assumption is that
it allows to study the system analytically. We expect
that in more realistic situations with some asymmetry
the spectre of dynamic behaviour will be richer and
will be observed under a wider range of parameter
values. For this symmetric model to produce feasible
(i.e. non-negative) fitnesses, one has to assume that
a,v,0>0,0>—+/ad,n >—.

The dynamics are not changed if fitnesses are
multiplied or divided by a constant. This allows one to
assume without loss of generality that § = 1. For the
symmetric model, the dynamic equation (1) can be
represented as

Ap = [pg(p—9) 1=y —Qpq)]/w, (2)
where the mean fitness can be represented as
w=1-[202—F—y)pql +(2%%?)  with Q=
l+a—2F—2y+2y. Numerous partial cases of this
dynamic equation have been studied including those
arising in the simplest models of frequency-dependent
selection as described in recent textbooks (Hartl &
Clarke 1989; Ridley 1993) and in more complicated
models (Mallet & Barton 1989; Asmussen &
Basnayake 1990; Altenberg 1991). All these references
but the last one have concentrated on conditions for
existence and stability of equilibria. Altenberg (1991)
has broken new ground by demonstrating that there
exists a small area of the parameter space, within
which none of the equilibria are stable. He has shown
that this area produces cycling or chaos and that
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Figure 1. Areas in parameter space corresponding to different
patterns of existence and stability of equilibria in a model of
linear frequency-dependent selection. (a) y > 1; (b) y < 1.
Only areas with C = 0 are shown.

different cyclic or chaotic attractors can be stable
simultaneously. The symmetric model studied by
Altenberg is described by (2) with Q = 0. Here we
study the general case of (2). We shall show that the
range of parameters that produce cycling or chaos is
broad, that cycling or chaos can occur simultaneously
with existence of several stable equilibria, and that the
modei can exhibit transient chaos and intermittency.

As is apparent from (2), the allele frequency p does
not change if p=0, ¢=0, p=gq or pg=(1—7)/Q.
Thus equation (2) always has two monomorphic
equilibria at p=0 and p=1 and a polymorphic
equilibrium at p = 4. If 0 < (1 —y)/Q < 4, it has two
additional  polymorphic equilibria with allele
frequencies satisfying p(1—p) = (1 —7y)/Q. We shall
denote these equilibria p_ and p,. An equilibrium of (2)
is stable if the corresponding eigenvalue lies between
—2 and 0. These ecigenvalues can be found in a
straightforward manner.

Figure 1 summarizes conditions for existence and
stability of different equilibria in terms of y, # and a
parameter C that combines several parameters. The
parameter C is defined as C = ¢, +¢, with ¢, = a—*
and ¢, =2(y+7y) or, alternatively, as C=
Q+4y—(1—p)% Parameter ¢, is the minimal possible
value of the fitness of heterozygote. If g <1, ¢
determines the minimal possible value of the fitness of
homozygotes, ¢,/(c;+ (1—4%)), whereas if §>1, ¢,
determines the maximum possible value of the fitness of
homozygotes, ¢, + #*. Thus parameter C characterizes
the overall strength of selection. For fitnesses to be
feasible ¢, must be non-negative and ¢; must be non-
negative if # < 0. These conditions imply that ¢ must
be larger or equal to 0 if f is negative, and must be
larger or equal to — % if § is positive. Figure 1 shows
areas in parameter space correponding to different
patterns of existence and stability of equilibria in a
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Figure 2. Dynamics of allele frequency with parameter values from the area marked SUUUS in figure 1. Both
monomorphic equilibria (p =0 and p = 1) are stable to small perturbations. (¢) #=—1.002, v =0.999, C=0.
Three trajectories are shown with initial allele frequencies p(0) = 0.09, p(0) = 0.55 and p(0) = 0.92. (b) = —1.001,

y =0.9985, C = 0, p(0) = 0.55.

model of linear frequency-dependent selection. Each
pattern is described by a string of S’s (for stable) and
U’s (for unstable). The left-most, the middle and the
right-most entries indicate the stability of the mono-
morphic equilibrium at p = 0, the polymorphic equi-
librium at p = } and the monomorphic equilibrium at
p =1, whereas the remaining entries (if any) indicate
the stability of the polymorphic equilibria p_ and p,.
The left parabola 1is described by equation

=—(f+5) (f+1). The right parabola is described
by equation C = —(f+1) (f—3).

Figure | shows that the system can have up to three
different stable equilibria simultaneously, that a
polymorphic equilibrium can be stable simultaneously
with two monomorphic equilibria, and that two
different polymorphic equilibria can be stable sim-
ultaneously. Simultaneous stability of different equi-
libria implies that the outcome of evolution strongly
depends on the initial conditions and population
history. These ‘classical’ features of the model of linear
frequency-dependent selection have been known from
previous studies (e.g. Cockerham et al. 1971 ; Asmussen
& Basnayake 1990). If parameters change in such a
way that the system moves from one area to another,
the dynamic system undergoes a bifurcation. For
example, a change from USU to USUSU corresponds
to a pitchfork bifurcation. Figure 1 also shows that
there are two areas with non-standard patterns of
stability of equilibria. In the first area (marked UUU),
none of the three equilibria (two monomorphic and one
polymorphic at p = 1) are stable (cf. Altenberg 1991).
If parameters change in such a way that the system
moves from USU to UUU, the dynamic system
undergoes a period-doubling bifurcation. In the second
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area (marked SUUUS), the two monomorphic equi-
libria are stable, whereas none of the three polymorphic
equilibria are stable. Numerical iterations of (2) with
parameter values corresponding to these areas reveal a
variety of complex dynamic behaviours (e.g. cycles and
chaos that arises via period-doubling route) similar to
those observed in classical ecological models (e.g. May
1974, 1976; May & Oster 1976; Hastings et al. 1993).
Figure 1 shows that sufficient conditions for the
complex dynamic behaviour to occur is sufficiently
strong overall selection (i.e. small C) and sufficiently
strong deleterious effect of heterozygote on homo-
zygotes (i.e. f# < —1). Altenberg (1991), who makes a
similar conclusion for a model representing one case of
our symmetric model, has discussed biological situa-
tions under which these conditions can be satisfied.
There are also two unusual types of behaviour
described in figure 2. In figure 24, depending on the
initial conditions, the population evolves to a fixation
state or remains polymorphic indefinitely. In the latter
case, the gradual changes in the allele frequency
towards p =% are interrupted by apparently chaotic
fluctuations that move p away from 3. Such alterations
between an apparently deterministic behaviour and
apparently chaotic fluctuations, repeated at apparently
random intervals, are called ‘intermittency’ (Pomeau
& Manneville 1979; Olsen & Degn 1985). In figure 25,
these alterations end at some time point with the
population settling down to a monomorphic state. In
this case the system exhibits ‘ transient chaos’ (Grebogi
et al. 1983; Tél 1990). In the examples presented in
figure 2, the deterministic phase of the dynamics can
last for hundreds of generations, the chaotic phase is
extremely short and transient chaos (in figure 26)
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Figure 3. Graphs of the allele frequency in the next generation, " = p+ Ap, as function of the allele frequency at this
generation, p. Also shown are the diagonal and the lines corresponding to the unstable polymorphic equilibria p_ and
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Figure 4. Dynamics of allele frequency with parameter values from the area marked SUSUS in figure 1. Both

monomorphic equilibria (=0 and p=1) and the polymorphic equilibrium at =3

=1 are stable to small

perturbations. (a) f= =5,y =0.9, C=0.1, p(0) = 0.55. (b)) #=—5,y =0.5, C=0.1, p(0) = 0.55.

persists for a very long time. In general, the durations
of all these stages depend both on the parameter values
and initial allele frequency (see below the discussion of
figure 3). Both intermittency and transient chaos are
known to occur in various dynamical models including
the simplest nonlinear model, the single logistic map.
The potential importance of these types of behaviour in
population studies was emphasised in (May 1987).
Recently, intermittency and transient chaos were
observed in numerical studies of ecological models
(Vandermeer 1993; Doebeli 1994 ; Hastings & Higgins
1994) described by complex systems of coupled
equations. In contrast, our model is much simpler and
purely frequency-dependent and allows a very simple
explanation of the mechanisms underlying inter-
mittency and transient chaos using the graphical
‘cobwebbing’ method (May & Oster 1976).

Figure 3 shows graphs of the allele frequency in the
next generation, p’ = p+ Ap, as function of the allele
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frequency at this generation, p. Also shown are the
diagonal and the lines corresponding to the unstable
polymorphic equilibria p_ and p,. First note that for p
in the neighbourhood of p_ or p,, the graph of p’ lies
very close to the diagonal (at which p’ = p). That
means that in these areas the changes in the allele
frequency p are very small. For p <p_, p’ < p, and p
slowly moves towards fixation of allele a. For p > p,,
£’ > p, and the allele frequency slowly moves towards
fixation of allele A. For p values slightly larger than p_,
p 1s slightly larger than p, and, thus, p slowly moves
towards . In the neighbourhood of p = 1, hcwever, the
dynamics are chaotic as suggested by the fact that the
slope of the graph of p” at p = 1 is smaller than —1. It
takes many generations to leave the neighbourhood of
p- or p, and once the system has left this neigh-
bourhood, the dynamics can abruptly become fully
chaotic in the neighbourhood of p =1, only to get
caughtin the neighbourhood of p_ or p, again, sooner or
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later. Between O and 1, the graph of " has a minimum,
marked ‘min’, and a maximum, marked ‘max’.
During the chaotic phase the allele frequency remains
between these points that represent the boundaries of
the chaotic attractor. In figure 3a these boundaries lie
close to 3 than the unstable equilibria and the allele
frequency cannot cross the values p, and p_. In this case
the intermittent chaos in the system (in the form
similar to that one in figure 24) is present forever. A
different situation is described in figure 34, where the
boundaries of the chaotic attractor lie further from 3
than the unstable equilibria p_ and p,. Now the allele
frequency can cross the values p, and p_ during the
chaotic phase. Once this has happened, p slowly
evolves to a fixation state (as in figure 2b). The
situation when the boundaries of the chaotic attractor
coincide exactly with the unstable equilibria is called a
‘crisis’ (Grebogi et al. 1983). In the model considered
here, if C = 0, the crisis occurs when y & f+2. Note
that in general the dependence of the length of chaotic
transients on the system parameter is proportional to
(a—a,)™’, where a is the parameter value, a, is the
parameter value at which the crisis occurs, and & is the
‘critical exponent,” which is equal to 0.5 for a broad
class of one-dimensional systems (Grebogi et al. 1987).
The parameter values for figure 2 and figure 4 above
were chosen to result in long transients. The parameters
for figure 3 were chosen slightly different from those for
figure 2 in order to produce a ‘smoother’ graph of p” as
function of p.

Numerical analysis of (2) has also shown, perhaps
surprisingly, that complex dynamic behaviour occurs
even outside areas marked UUU and SUUUS in
figure 1. In the areas marked USU and SUSUS, cycles
and chaos can not only exist simultaneously with stable
equilibria, but the former can have much larger
domains of attraction than the latter (see figure 4). For
parameter values used in computing the dynamics in
figure 4, both monomorphic equilibria and the
polymorphic equilibrium at p =} are stable to small
perturbations. In figure 4a, the growing regular
oscillations in allele frequency are interrupted by
apparently chaotic fluctuations that move p back to the
neighbourhood of , i.e. one observes intermittency. In
figure 45, the alterations between apparently
deterministic behaviour and apparent chaos end at
some time point with the population settling down to
a polymorphic state at p = , i.e. one observes transient
chaos. The graphical ‘cobwebbing’ method can be
used to understand these kinds of behaviour as well.

A necessary condition for dramatic changes in allele
frequency described in figures 2 and 4 is strong (at least
occasionally) selection. If selection is very weak (i.e. if
the differences among coefficients a, £, v, 6 and % are
very small) then the difference equation (2) can be
approximated by the corresponding differential
equation and the only possible outcome of the
dynamics is gradual evolution towards an equilibrium.
This is a further illustration of differences between
qualitative and quantitative characteristics of popu-
lation genetic models under strong selection and weak
selection which we studied previously (Gavrilets 1993
Gavrilets & Hastings 1993, 19944, 4). Strong selection
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seems to be typical in natural populations (Endler
1986). This suggests that nonlinear phenomena similar
to those described here may be common in the
evolution of populations.

3. DISCUSSION

The results presented here illustrate several im-
portant points. The few previous models of frequency-
dependent selection within a single species (reviewed in
Altenberg 1991) that have been found to produce
cycles and chaos, involve either fitnesses that are
complex functions of the genotype frequencies or
produce the complex behaviour for a very limited
range of parameter values. Our first point is that
simple population genetics models can have very
complex dynamic behaviour (including cycles and
chaos) for a broad range of parameter values (e.g. see
figure 2), and the even more complex dynamical
behaviour of intermittency and transient chaos for
more restricted sets of parameter values near bi-
furcation points.

Population genetics theory has been dominated by
the equilibrium approach since its inception. A general
implicit assumption is that populations under selection
always gradually evolve to an equilibrium. As a
consequence, analysis of population genetic models has
focused on conditions for existence and stability of
equilibria. Our second point is that analysis of
equilibria, although necessary, is still incomplete. In
some situations it can even be misleading if, for
example, domains of attraction of equilibria are very
small and the system is never able to get there (as in
figure 4a) or transient behaviour persists for a very
long time.

The general equilibrium paradigm also manifests
itself in the fact that the standard explanation of
observed erratic fluctuations of allele frequencies is
random genetic drift. In situations where this ex-
planation obviously does not work (e.g. Dobzhansky
1943), explanations have typically focussed on non-
constant parameter values (for example, as a conse-
quence of climatic changes). Our third point is that
selection alone (without external forces) can explain
observed regular or random fluctuations in allele
frequencies. Ubiquity of frequency-dependent selection
make it one possible candidate; another possible
explanation is density-dependent selection (Asmussen
1979). Interestingly enough, the very first model of
frequency-dependent selection (Wright & Dobzhansky
1946) published almost 50 years ago was proposed in
an attempt to explain complex dynamics of the genetic
composition observed (Dobzhansky 1943) in some
natural populations. Complex behaviour was also
observed in a recent experiment (Curtsinger 1990)
which looked direct at the dynamics under frequency-
dependent selection. Recently developed statistical
methods (Sugihara & May 1990; Ellner 1991 ; Ellner et
al. 1991; Hastings et al. 1993) can be used to decide
whether ‘deterministic’ or ‘random’ factors better
explain the complex dynamics.

Substituting appropriate physical, chemical, econ-
omical or ecological terms for the genetical ones in the
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points we just emphasised would result in claims that
have been a subject of numerous studies and discussions
in the recent years. In population genetics, however,
these ideas have not received the attention they deserve
(Ferrier & Fox 1995).

We thank John Braverman, Bob Costantino and reviewers
for comments on the manuscript. This work was supported
by U.S. Public Health Service Grant R0O1 GM 32130 to A. H.
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