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Abstract

The paper entitled ‘‘Sympatric speciation,’’ which was published by John Maynard Smith in 1966, initiated the development of

mathematical models aiming to identify the conditions for sympatric speciation. A part of that paper was devoted to a specific two-locus,

two-allele model of sympatric speciation in a population occupying a two-niche system. Maynard Smith provided some initial numerical

results on this model. Later, Dickinson and Antonovics (1973) and Caisse and Antonovics (1978) performed more extensive numerical

studies on the model. Here, I report analytical results on the haploid version of the Maynard Smith model. I show how the conditions for

sympatric and parapatric speciation and the levels of resulting genetic divergence and reproductive isolation are affected by the strength

of disruptive selection and nonrandom mating, recombination rate, and the rates of male and female dispersal between the niches.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

John Maynard Smith has made a number of extremely
important contributions to evolutionary biology, many of
which have also found various applications well outside
evolutionary biology (see other papers in this issue). One of
his earlier influential works was the paper entitled
‘‘Sympatric speciation’’ published by American Naturalist
in 1966.

There were two major stimulas for the paper in a few
preceding years. The first was a series of laboratory
experiments with Drosophila melanogaster by Thoday and
his colleagues (Millicent and Thoday, 1961; Thoday and
Boam, 1959; Thoday and Gibson, 1962) that showed rapid
emergence of very strong reproductive isolation. These
experiments suggested that sympatric speciation can
proceed in a straightforward way. The second was the
publication of Ernst Mayr’s (1963) monumental volume
e front matter r 2005 Elsevier Ltd. All rights reserved.
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‘‘Animal speciation and evolution’’ which forcefully argued
against the importance of sympatric speciation in nature.
By the mid-1960s, solid theoretical work on sympatric
speciation was needed to help clarify the arguments and
conflicting evidence on sympatric speciation.
The first part of the paper analysed the conditions for the

maintenance of genetic variation in a two-deme version of
the Levene model (Levene, 1953) which Maynard Smith
generalized for the case of habitat choice by females. The
second part was devoted to the following question: given
that genetic variation is stably maintained under disruptive
selection, can reproductive isolation evolve between the
two ‘‘extreme’’ morphs, so that no low-fitness intermedi-
ates are produced even when different individuals freely
encounter each other?
Maynard Smith discussed four possible mechanisms

that can lead to the evolution of reproductive isolation
in the presence of gene flow: (1) ‘‘habitat selection,’’ by
which he meant the tendency of organisms to mate in
the same niche where they were born, (2) ‘‘pleiotropism,’’
by which he meant the situations in which the alleles
that adapt the individuals to local conditions also
control mating behavior, (3) ‘‘modifier genes,’’ by which

www.elsevier.com/locate/yjtbi


ARTICLE IN PRESS
S. Gavrilets / Journal of Theoretical Biology 239 (2006) 172–182 173
he meant the establishment of selectively neutral genes
that cause pleiotropism in the genes underlying local
adaptation, and (4) ‘‘assortative mating genes,’’ by
which he meant genes that cause assortative mating
regardless of the genotype at the selected loci. I note that
the majority of the later theoretical research on sympatric
speciation has been done along these four lines first
discussed by Maynard Smith. Maynard Smith also
proposed a specific model of sympatric speciation via the
mechanism of ‘‘assortative mating genes’’ which will be the
focus of this paper.

In the years since 1966 sympatric speciation went
through cycles of increased enthusiasm and skepticism
accompanied by a continuous growth in both empirical
(reviewed by Coyne and Orr, 2004) and theoretical
(reviewed by Gavrilets, 2004) knowledge. Unfor-
tunately, most of the theoretical work remains based on
numerical simulations which significantly limits the
generality of theoretical conclusions (Gavrilets, 2003).
Given the exploding growth of interests in speciation, in
general, and in sympatric speciation, in particular, and
given the controversies that keep remain associated
with sympatric speciation (as is apparent from a compar-
ison of major conclusions on sympatric speciation of
Coyne and Orr, 2004 and Gavrilets, 2004 and those
of Dieckmann et al., 2004) there is a growing need
of a solid quantitative theory of speciation. Although
recently a number of simple models of sympatric speciation
have been solved analytically (Gavrilets, 2004), obtaining
analytical results still remains a major theoretical
challenge. Below I present analytical results for a
simplified version of the model introduced by Maynard
Smith. A part of these results were briefly introduced in
Gavrilets (2004, Chapter 10).

I will define sympatric speciation as the emergence of
new species from a population where mating is random
with respect to the birthplace of the mating partners
(Gavrilets, 2003, 2004). Note that, implicitly, mating is
allowed to be nonrandom with respect to, for example,
genotype, phenotype, and culturally inherited traits. This
definition is actually implied in most existing mathematical
models of sympatric speciation.
2. The Maynard Smith model

Consider a diploid population with discrete nonoverlap-
ping generations inhabiting two distinct niches. Assume
that density-dependent factors operating indepen-
dently within each niche maintain population sizes
at constant levels that do not depend on the average
fitness of the populations. This is the case of soft
selection (e.g. Christiansen, 1975; DeMeeus et al., 1993;
Wallace, 1968).

Let individuals differ with regard to the disruptive
selection (DS) locus with alleles A and a controlling
fitness (viability) in a local environment according
to the following scheme:

AA Aa aa

in niche 1 1 1 1� s1

in niche 2 1� s2 1� s2 1:

Here the coefficients s1 and s2 measure the strength of
viability selection within each niche (0ps1; s2p1). That is,
the dominant allele A is advantageous in niche 1, whereas
the recessive allele a is advantageous in niche 2. Maynard
Smith assumed that surviving adults form a single
randomly mating population. After mating, each female
lays a fraction ð1þHÞ=2 of her eggs in the niche where she
was raised and lays the remaining fraction ð1�HÞ=2 in the
other niche (0pHp1). The coefficient H measures the
degree of habitat selection by females. H ¼ 0 implies no
habitat selection, as in the Levene model (Levene, 1953;
Gavrilets, 2004, pp. 235–240). H ¼ 1 implies complete
habitat selection. Note that, alternatively, one can think of
mating as taking place within the niches, with males
migrating randomly between the niches prior to mating
and females either staying in the niche where they were
born or going to the other niche with probabilities ð1þ
HÞ=2 and ð1�HÞ=2, respectively.
The first question to ask is whether spatially hetero-

geneous selection maintains genetic variation in the DS
locus. For simplicity, assume that the sizes of the two
populations are the same. Then, as shown by Maynard
Smith (1966), if H ¼ 0 (i.e. females lay eggs in the two
niches at random), genetic variation is maintained if

�1o
s2 � s1

s1s2
o1.

If H ¼ 1 (females always lay eggs in the niche where they
themselves were raised), then genetic variation is main-
tained if

�
3

2
o

s2 � s1

s1s2
o3.

These inequalities show that maintaining genetic variation
requires sufficiently strong selection (i.e. large s1 and s2);
increasing the degree of habitat choice by females H

increases the range of conditions resulting in stable
polymorphism.
At the polymorphic equilibrium the locally advanta-

geous alleles (i.e. allele A in niche 1 and allele a in niche 2)
have higher frequencies than the locally deleterious alleles
(i.e. allele a in niche 1 and allele A in niche 2). However,
because mating is random, offspring with locally deleter-
ious genotypes will be constantly produced at relatively
high frequencies which will reduce the average fitness of
each population.
Assume next that there is also a nonrandom mating

(NM) locus with alleles B and b controlling assortative
mating. Let the rate of recombination between the DS and
NM locus be r (0prp1

2
). We will suppose that mating

occurs according to the O’Donald model with dominance
(O’Donald, 1960, 1980; Gavrilets, 2004, pp. 287–290). That
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is, individuals BB and Bb have the same phenotype which
is recognizably different from the phenotype of individuals
bb. With probability a, an individual mates with another
individual that has the same phenotype (0pap1). With
probability 1� a, the individual is engaged in random
mating.

For the special case of H ¼ 1 (i.e. complete habitat
selection by females), a ¼ 1 (i.e. no mating between
genotypes BB=Bb and bb is allowed), and r ¼ 1

2
(i.e. the

loci are unlinked), Maynard Smith presented a numerical
example illustrating that an initial difference in the
frequencies of NM alleles between the niches gets
progressively amplified. One NM allele gets associated
with the locally advantageous allele A in niche 1, and the
other NM allele gets associated with the locally advanta-
geous allele a in niche 2. As a result of this, the individuals
raised in a niche will tend to mate together. The eventual
outcome of the evolutionary dynamics is the increase in
frequencies of two reproductively isolated genotypes
AA=BB and aa=bb (or AA=bb and aa=BB) and the
complete disappearance of all intermediate genotypes. This
outcome is naturally interpreted as sympatric speciation.
[Note that although in Maynard Smith’s simulations
females always lay eggs in the niche where they were born,
speciation is sympatric according to our definition because
males move randomly between the niches.] Although
Maynard Smith did acknowledge that the parameter
combination he used was very favorable for speciation
but unrealistic, he thought that more realistic conditions
would merely slow down the speciation process but not
prevent it completely. According to his 1966 paper, the
crucial process in sympatric speciation is the establishment
of a stable polymorphism under disruptive selection rather
than the subsequent evolution of reproductive isolation,
which he believed was likely (p. 649).

Thorough numerical analysis of the Maynard Smith
model was undertaken by Dickinson and Antonovics
(1973) as a part of their study of a number of different
models. They assumed that the alleles at the DS locus act
additively (so that in each niche, the fitness of hetero-
zygotes is the average of the fitnesses of homozygotes), and
allowed for a limited migration of males between the niches
at rate m. The females did not migrate. This model was
designed to reflect plant situations, where there is pollen
transfer between sessile organisms and seed flow is
negligible. Dickinson and Antonovics numerically studied
the progress towards speciation during the first 400
generations as a function of the strength of selection for
local adaptation s (which was assumed to be equal in both
niches), the strength of assortative mating a, and the male
migration rate m (see their Fig. 5). The progress toward
speciation was measured by the difference DNM in the
frequency of an NM allele between the niches. Depending
on parameter values, the system evolved to a state with no
differentiation in the NM locus (i.e. DNM ¼ 0) or to a state
with some differentiation in the NM locus (i.e. jDNMj40).
The first outcome is promoted by large migration, weak
selection, and weak assortative mating. The second out-
come is promoted by low migration, strong selection, and
strong assortative mating. This outcome is interpreted as (a
step towards) speciation that is sympatric or parapatric,
depending on whether male migration rate is m ¼ 1

2
or

mo1
2
.

Overall, Dickinson and Antonovics (1973) confirmed
Maynard Smith’s conclusion that sympatric speciation is
theoretically possible. However, they also showed that the
maintenance of genetic variation under disruptive selection
does not necessarily lead to the evolution of reproductive
isolation. Some additional conditions have to be satisfied
as well. In particular, for sympatric speciation to occur (i)
assortative mating has to be strong enough and (ii) the
joint strength of selection and assortative mating has to be
large enough.
Later, Caisse and Antonovics (1978) extended the two-

deme results of Dickinson and Antonovics (1973) to the
case of 10 demes arranged along a line. In one version of
their model, the rate of male migration between demes
decreases exponentially with the distance between them.
The other version assumes that males migrated only
between the neighboring demes (i.e. as in the stepping-
stone model). The strength of selection acting on the DS
locus increased linearly from deme 1 to deme 10 or
undertook a step change between the two deme in the
middle of the array (see Endler, 1977 for a review of earlier
work on spatially heterogeneous selection). Most of the
results given by Caisse and Antonovics (1978) are for
unlinked loci and a ¼ 0:9, that is, very strong assortative
mating. Slow convergence towards equilibria and the
relatively short duration of the simulations (typically 400
generations) make interpretation of their results difficult
because there is no guarantee that they correspond to
equilibrium rather than transient states. Overall, however,
their results appear to be quite compatible with those of
Dickinson and Antonovics. In particular, strong selection
(s40:1) and high levels of assortative mating (a40:4) are
necessary for a divergence at the NM locus.

3. The haploid version of the Maynard Smith model

To get a better understanding of the interactions between
disruptive selection and nonrandom mating, let us consider
a haploid version of the Maynard Smith model. Let the DS
locus control viability according to the following sym-
metric scheme:

A a

viability in niche 1 1 1� s

viability in niche 2 1� s 1;

(1)

where coefficient s measures the strength of selection within
each niche (0psp1). Note that this type of spatially
heterogeneous selection always maintains genetic variation
at the DS locus with both alleles having frequency 1

2
in both

niches. Let the NM locus control assortative mating
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according to the O’Donald model. That is, with probability
a, an individual mates with another individual that has
exactly the same allele (B or b) at the NM locus. With
probability 1� a, the individual mates irrespective of
genotype.

Assume that migration takes place after selection but
before mating and that the sizes of the populations are the
same and constant (i.e. soft selection). Let males migrate
between the niches with probability m per generation, and
females with probability f per generation. Note that
parameter f corresponds to parameter H in the original
Maynard Smith model. In the special case numerically
studied by Maynard Smith, females always lay eggs in the
niche they were born (f ¼ 0) whereas males disperse
randomly (m ¼ 1

2
).

In this model, there are four different genotypes and two
different niches. Thus, the population genetic state has to
be characterized by 2� ð4� 1Þ ¼ 6 independent variables.
In spite of this complexity, analytical progress is possible
by utilizing the symmetry of the model.
3.1. Dynamic equations

Let the frequencies of four genotypes AB;Ab; aB, and ab

among offspring in the ith niche be zi;1; zi;2; zi;3; zi;4. Assume
that the viability of the jth genotype in the ith niche is wi;j

(i ¼ 1; 2; j ¼ 1; 2; 3; 4). Let us define indicator variables Zi

showing the presence or absence of allele B at genotype i:
Z1 ¼ Z3 ¼ 1; Z2 ¼ Z4 ¼ 0. Let us also define indicator
variables dij showing whether genotypes i and j have the
same allele at the NM locus. The values of dij for different
pairs of genotypes can be represented by a matrix:

d ¼

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

0
BBB@

1
CCCA.

The genotype frequencies among surviving offspring in
niche i are

zs
i;j ¼

wi;j

wi

zi;j , (2)

where wi ¼
P

j wi;jzi;j is the average fitness in niche i.
After migration, the genotype frequencies in mating

females are

x1;j ¼ ð1� f Þzs
1;j þ fzs

2;j, (3a)

x2;j ¼ ð1� f Þzs
2;j þ fzs

1;j, (3b)

and the genotype frequencies in mating males are

y1;j ¼ ð1�mÞzs
1;j þmzs

2;j, (4a)

y2;j ¼ ð1�mÞzs
2;j þmzs

1;j. (4b)
Note that the frequency of allele B among mating males in
niche i is

Y i ¼ yi;1 þ yi;3, (5)

and that of alleles b is 1� Y i.
The frequency of matings in niche i between females with

genotype k and males with genotype l can be written as

Piðk � lÞ ¼ xi;kyi;l 1� aþ a
dkl

Y Zl

� �
. (6)

This expression implies that each female mates randomly
with probability 1� a and assortatively with probability a.
Here variable Y Zl

is the population frequency of the allele
present at the NM locus of males with genotype l.
Genotype frequencies among offspring born in niche i in

the next generation are

p0i;j ¼
1

W

X
k;l

Piðk � lÞRðk; l ! jÞ, (7)

where Rðk; l ! jÞ is the probability that k � l mating
results in offspring with genotype j (e.g. Nagylaki, 1992,
Eq. 8.9; see also Bürger, 2000), and W is the normalizing
factor (such that

P
j p0i;j ¼ 1).

To analyse the dynamic equations (2)–(7) it is convenient
to use a transformation proposed by Karlin and Feldman
(1970). Specifically, let

ui;1 ¼ zi;1 þ zi;2 þ zi;3 þ zi;4, (8a)

ui;2 ¼ zi;1 � zi;2 þ zi;3 � zi;4, (8b)

ui;3 ¼ zi;1 þ zi;2 � zi;3 � zi;4, (8c)

ui;4 ¼ zi;1 � zi;2 � zi;3 þ zi;4 (8d)

be new variables describing the genetic state of the
population in niche i. Note that ui;1 ¼ 1, that the
frequencies of alleles A and B are

zi;A ¼ zi;1 þ zi;2 ¼
1þ ui;3

2
, (9a)

zi;B ¼ zi;1 þ zi;3 ¼
1þ ui;2

2
, (9b)

and that linkage disequilibrium is

Di ¼ zi;1zi;4 � zi;2zi;3 ¼
ui;4 � ui;2ui;3

4
. (9c)

In this model, the population always evolves to an
equilibrium state where the locally advantageous allele has
a higher frequency than the locally deleterious allele. With
regard to other features, there are two qualitatively
different regimes. In the first regime, the population
evolves to a line of neutrally stable equilibria at which

u2;1 ¼ u2;2 ¼ U2, (10a)

u3;1 ¼ �u3;2 ¼ U3, (10b)

u4;1 ¼ �u4;2 ¼ U2U3, (10c)
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where U2 is an arbitrary number between �1 and 1, and
U3 is a positive solution of a certain quadratic equation.
The above conditions imply that the frequencies of the
alleles at the NM locus in both niches are the same (and
arbitrary), the frequencies of the locally advantageous
alleles (i.e. allele A in niche 1 and allele a in niche 2) are the
same and uniquely defined by parameters, and that both
local populations are at linkage equilibrium.

In the second regime, the population evolves to one of
two ‘‘speciation equilibria’’ with strong differentiation in
both loci between the niches and linkage disequilibrium
within each niche:

u2;1 ¼ �u2;2 ¼ V2, (11a)

u3;1 ¼ �u3;2 ¼ V3, (11b)

u4;1 ¼ u4;2 ¼ V 4, (11c)

where V 3;V 4 are positive and their values as well as the
absolute value of V2 are uniquely defined by parameters.
The difference between the equilibria is which NM allele (B
or b) is associated with the locally advantageous DS allele.

We will start analysing system (2)–(7) with the simplest
case. Some details of the derivations are outlined in
Appendix. A Maple file with more details can be down-
loaded from the author’s web page.
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Fig. 1. Equilibria in the basic model. (a) The value of U3 at the line of equi

equilibria. (c) The values of V3 at a speciation equilibrium. (d) The values of
3.2. Basic case: no female migration, random male

migration, and no linkage

Assume that females never migrate (f ¼ 0), males
disperse randomly between the niches (i.e. m ¼ 1

2
) and the

loci are unlinked (i.e. r ¼ 1
2
). This case corresponds to the

one analysed by Maynard Smith (1966).
At the line of equilibria (10), U2 is an arbitrary number

between �1 and 1, and U3 is given by a positive solution of
a quadratic equation

U2
3 þ

2� s

2s
U3 �

1

2
¼ 0. (12)

The frequency of the locally advantageous allele at the DS
locus is ð1þU3Þ=2. This frequency grows from 1

2
to 3

4
as the

strength of selection for local adaptation s increases from 0
to 1. The difference in the frequencies of an DS allele
between the niches is equal to U3. This difference grows
from 0 to 1

2 as s increases from 0 to 1 (see Fig. 1(a)).
The line of equilibria exists always. It is locally stable if

aoac �
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3sÞ2 þ 4ð1� sÞ

q
� 3s

4
, (13)

that is, if the intensity of assortative mating is smaller than
a critical value ac. Fig. 1(b) illustrates the dependence of ac

on s.
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libria. (b) The critical value of a for the existence of a pair of speciation

V2 at a speciation equilibrium.
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At the speciation equilibria (11),

V 2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞð2a2 þ 3sa� 2a� sÞ

4as

r
, (14a)

V 3 ¼
sþ a� 1

s
, (14b)

V 4 ¼ V 2. (14c)

The speciation equilibria are feasible if a is larger than the
critical value ac defined by Eq. (13). That is, the speciation
equilibria exist only when the line of equilibria (10) is
unstable. Numerical simulations suggest that no other
equilibria are stable in this model. That is, for aoac the
system evolves to the line of equilibria whereas for

a4ac, (15)

the system evolves to a speciation equilibrium.
Following Maynard Smith (1966) and Dickinson and

Antonovics (1973), one can characterize the resulting
degree of reproductive isolation by the difference in the
frequencies of an NM allele between the niches. At the
speciation equilibria this difference is equal to jV 2j.
Fig. 1(c) illustrates the level of between-niche divergence
in the NM locus achieved at equilibrium. One can see that
once the condition for sympatric speciation is satisfied, the
equilibrium value of jV 2j approaches 1 very rapidly with
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1

α 

r=0.004
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α

(a)

(b) (c

Fig. 2. Effects of recombination rate r on the possibility of sympatric speciation

speciation equilibria with r ¼ 0:1. (c) The value of V3 at speciation equilibria
increasing s and a. Fig. 1(d) illustrates the level of between-
niche divergence in the DS locus achieved at speciation
equilibria. At the speciation equilibria the difference in the
allele frequencies in the DS locus is equal to jV 3j. Note that
at a speciation equilibrium jV 3j can reach the maximum
possible value of 1 whereas at the line of equilibria the
maximum value was 1

2
.

The critical value ac decreases from 1 to 1
2
as s grows

from 0 to 1. That is, sympatric speciation requires
sufficiently strong assortative mating and selection for
local adaptation. The population switches from the first
regime to the second ‘‘because’’ this results in increasing its
average fitness. In this model, the gain in the average fitness
can be written as ða� acÞ=8. Quantitatively similar
behavior is observed in some other models of sympatric
speciation (Gavrilets, 2004). However, in other models (e.g.
Gavrilets, 2005; Kirkpatrick and Ravigné, 2002; Kisdi and
Geritz, 1999) whether or not the population evolves to the
speciation equilibrium depends also on initial conditions.

3.3. Effects of linkage

The results can be generalized for the case of linked loci.
It is well appreciated that close linkage increases both the
plausibility and the level of genetic divergence between
sympatric populations (e.g. Felsenstein, 1981; Gavrilets,
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)

. (a) Critical value of a for four different values of r. (b) The value of V 2 at

with r ¼ 0:1.
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2004; Udovic, 1980). Fig. 2 illustrates these effects for the
Maynard Smith model. In particular, Fig. 2(a) shows that
increasing recombination rate r dramatically increases the
range of combinations of s and a leading to sympatric
speciation. Figs. 2(b) and (c) show that once conditions for
sympatric speciation are satisfied the level of divergence in
both the NM and DS loci grows quickly.

3.4. Effects of female migration

Let m ¼ 1
2
but f and r be between 0 and 1

2
. Note that this

is still the case of sympatric speciation (because males
disperse randomly). On the line of equilibria U3 is given by
a positive solution of the quadratic equation

U2
3 þ ð1þ 2f Þ

2� s

2s
U3 �

1

2
þ f ¼ 0. (16)

As before U3 also gives the difference in the frequency of
an allele in the DS locus between the niches (see Fig. 3(b)).
Increasing female migration rate f decreases the degree of
divergence between the niches in the DS locus with U3

approaching zero as f approaches 1
2
. Note that U3 does not

depend on the recombination rate.
The effects of female migration rate f on the possibility

of sympatric speciation are illustrated in Fig. 3(a). The
range of parameter values resulting in sympatric speciation
1

s

α 

f=0.0

f=0.1

f=0.2

f=0.3

s
α 

V
2

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0

0
(a)

(c)

Fig. 3. Effects of female migration rate f on the possibility of sympatric spec

equilibria for four different values of f. (b) The value of U3 at the line of equil

value of V3 at a speciation equilibrium with f ¼ 0:1.
quickly shrinks with increasing f. Figs. 3(c) and (d) show
that increasing female migration also decreases the result-
ing levels of divergence in both loci.

3.5. Effects of restrictions on male migration

Let f ¼ 0 but m and r be between 0 and 1
2
. This is the case

of parapatric speciation. On the line of equilibria the value
of U3 is given by a positive solution of the quadratic
equation:

U2
3 þm

2� s

s
U3 � ð1�mÞ ¼ 0. (17)

Obviously, decreasing the rate of male migration m

increases the frequency of the locally advantageous allele.
This effect is illustrated in Fig. 4(b). Note that u3 does not
depend on the recombination rate.
The pair of speciation equilibria (11) are defined by

much more cumbersome equations. Fig. 4(a) illustrates the
conditions for existence of these equilibria. Interestingly,
the effect of reduced male migration is much less significant
than that of reduced recombination (compare Fig. 4(a)
with Fig. 2(a)). Figs. 4(c) and (d) illustrate the level of
between-niche divergence in the NM and DS loci achieved
at equilibrium. One can see that once the conditions
for sympatric speciation are satisfied, the equilibrium
s
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Fig. 4. Effects of male migration rate m on the possibility of parapatric speciation. (a) Critical value of a for four different values of m. The curves
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values of jV 2j and V 3 approach 1 very rapidly with
increasing s and a.

3.6. Equal migration of sexes

Finally, let us assume that the male and female migration
rates are arbitrary but equal (f ¼ m). In this case, on the
line of equilibria the value of U3 is given by a positive
solution of the quadratic equation

U2
3 þ 2m

2� s

s
U3 � ð1� 2mÞ ¼ 0. (18)

Obviously, decreasing the rate of migration increases the
frequency of the locally advantageous allele.

As for speciation equilibria (11), it turns out that they do
not exist. This suggests that the assumption about unequal
migration rates is crucial for the possibility of speciation in
the haploid version of the Maynard Smith model. (There is
of course a possibility that some nonsymmetric equilibria
exist and are stable but I was not able to find them.) I do
not have an intuitive explanation of this result, however,
somewhat similar effects have been observed in other
models with sex differences. For example, it is well known
that the structure of equilibria is much more complex in
one-locus, two-allele models with differential selection in
the sexes than in the standard model with no sex differences
(Bodmer, 1965).

4. Discussion

The results on the haploid version of the Maynard Smith
model presented above put earlier conclusions, which were
based exclusively on numerical simulations, on firmer
theoretical grounds. Here I have shown that in the model
studied sympatric speciation requires sufficiently strong
nonrandom mating and sufficiently strong and spatially
heterogeneous selection for local adaptation. Close linkage
between the disruptive selection locus and the nonrandom
mating locus greatly increases the range of parameter
values resulting in sympatric speciation (see Fig. 2(a)).
Restrictions on male migration promote (parapatric)
speciation but the overall effect is not particularly great
(see Fig. 4(a)). The explanation is that decreasing male
migration rate decreases the opportunities for hybridiza-
tion which, in turn, reduces the ‘‘incentive’’ to evolve
stronger reproductive isolation. These conclusions are well
appreciated in theoretical speciation research (Gavrilets,
2004). A less appreciated feature of the Maynard Smith
model is the importance of the assumption that females’
movement between the niches is restricted. Allowing for
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females to migrate and increasing the rate of female
migration quickly decreases the opportunity for speciation
(see Fig. 3(a)). Also, speciation in (the haploid version of)
the Maynard Smith model appears to require that the rates
of male and female migration are different. If one allows
for equal migration of both sexes, then speciation does not
seem to be possible, even when migration and recombina-
tion rates are small and selection and assortative mating
are very strong. Therefore, although speciation in the
Maynard Smith model is sympatric, spatial subdivision and
restrictions on migration are crucial for its success.

An important biological question concerns the levels of
reproductive isolation and of gene flow between the
emerging clusters of genotypes. Theoretical results (see
Figs. 1–4) show that once the conditions for speciation are
satisfied, genetic divergence between the clusters quickly
approaches the maximum possible value with increasing
the strength of selection s and the strength of nonrandom
mating a. However, unless s and a are very close to one,
hybridization will be ongoing. As a result, no genetic
divergence in neutral markers will be maintained between
the sympatric or parapatric clusters of genotypes.

Where comparable, the analytical results on the haploid
version of the Maynard Smith model appear to be
qualitatively similar to the earlier numerical results on
the original diploid model (Caisse and Antonovics, 1978;
Dickinson and Antonovics, 1973). Whether the differences
in male and female migration rates in the diploid model are
as important as in the haploid model is currently unknown.

One major implicit limitation of the Maynard Smith
model is the absence of costs of being choosy. In the model,
all organisms have equal mating success no matter how
many (or few) preferred mates exist in their local
populations. Costs of being choosy have been recently
identified as a major factor opposing sympatric speciation
(Gavrilets, 2004) whose importance is similar to that of
recombination (Felsenstein, 1981). Another important
limitation is the assumption that selection is soft, so that,
the contribution of a local population to the overall
offspring pool does not depend on the average fitness of the
local population. Introducing costs of being choosy and
using hard selection instead of soft selection are expected to
make the maintenance of genetic variation and sympatric
speciation much more difficult.

In the models considered here I assumed that migration
takes place after selection. Migration occurring before
reproduction/selection will impose a positive correlation
between offspring fitness and place of origin, reinforcing
the speciation process.
Du2 ¼
sð1þ aÞ2½2su23 þ ð2� sÞu3 � s� þ 4au2

2½sðs� 2Þu3 þ 2s� 2� s2 � 2asþ 2a�

2½ð2� sþ su3Þ�sð1þ aÞ2
. (20b)
A critical theoretical question is how the range of
parameter values resulting in speciation will be affected if
the number of loci underlying local adaptation and
nonrandom mating increases. Intuitively one expects this
range to shrink (because each individual locus will be
subject to weaker selection whereas recombination will
become more effective in destroying within-population
differentiation). Finding conditions for speciation in multi-
locus models represents a formidable mathematical
challenge.
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Appendix A

A.1. Equilibria in the basic case

Let f ¼ 0;m ¼ 1
2
; r ¼ 1

2
. I will start by looking for

symmetric equilibria satisfying conditions u2;1 ¼ u2;2; u3;1 ¼

�u3;2 and u4;1 ¼ �u4;2. Dropping the second subscript for
simplicity of notation, the equations for a change per
generation in u2 and u3 are

Du2 ¼
sðu4 � u2u3Þ

2� sþ su3
, (19a)

Du3 ¼ �
2su2

3 þ ð2� sÞu3 � s

2ð2� sþ su3Þ
. (19b)

From the first equation it follows that at equilibrium
u4 ¼ u2u3. Assuming this, the equation for u4 becomes

Du4 ¼ �
u2ð2su2

3 þ ð2� sÞu3 � s�

2ð2� sþ su3Þ
. (19c)

Thus, at equilibrium u2 is defined by Eq. (12), u2 is
arbitrary, and u4 ¼ u2u3. This set of conditions defines a
line of equilibria (10).
Next let us look for symmetric equilibria satisfying

conditions u2;1 ¼ �u2;2; u3;1 ¼ �u3;2 and u4;1 ¼ u4;2. Drop-
ping the second subscript for simplicity of notation, the
equation for a change per generation in u2 is

Du2 ¼
2su2u3 � sð1þ aÞu4 þ ð2� sÞð1� aÞu2

2½ð2� sþ su3Þ�
. (20a)

Solving the right-hand side of the last equation for u4 and
substituting the resulting equation into an equation for a
change per generation in u3, one finds that
The right-hand side of the last equation can be used to
express u2 is a function of u3. Substituting the resulting
expression for u2 into an equation for a change per
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generation in u4, one finds that

Du4 ¼
�2u2ðsu3 þ 1� a� sÞðsu3 þ 1� aþ asÞ

sð1þ aÞð2� sþ su3Þ
. (20c)

Of the two solutions for u3 the last equation only is
feasible.

Solutions for other parameter values are identified using
similar procedures.
A.2. The eigenvalues of the stability matrix when r ¼ 1
2
; f ¼

0;m ¼ 1
2

Let us choose a point on the line of equilibria.
Straightforward calculations show that the eigenvalues of
the stability matrix at this point do not depend on its
coordinates and are

l1 ¼
4ð1� sÞ

½2� sð1� u3Þ�
2
, (21a)

l2 ¼
ð1� sÞð1þ aÞ

½2� sð1� u3Þ�
2
, (21b)

l3 ¼
ð1� sÞð1þ aÞ
2� sð1� u3Þ

, (21c)

l4 ¼
2ð1� sÞ

½2� sð1� u3Þ�
2
, (21d)

which all are always between 0 and 1,

l5 ¼
1þ a

2� sð1� u3Þ
, (21e)

which is always nonnegative, and

l6 ¼ 1. (21f)

The line of equilibria is locally stable if l5o1 which is the
same as ao1� sð1� u3Þ.
A.3. Speciation equilibria when m ¼ 1
2

Straightforward calculations show that V 3 is given by a
positive solution of the quadratic

2s2V 2
3 þ A1V3 þ A0 ¼ 0, (22a)

where

A1 ¼ ð2� sÞs½ð1� aÞð1þ 2rÞ þ 2f ð1þ aÞ�, (22b)

A0 ¼ � s2ð1þ aÞ þ 2rð1� aÞ½s2 þ 2ð1� sÞð1� aÞ�

þ 2f ð1þ aÞ½s2 þ 4rð1� sÞð1� aÞ�. ð22cÞ

Given V 3, the value of V 2 can be found from

V2
2 ¼

sð1þ aÞ2ð1� 2f Þ½2sV 2
3 þ ð2� sÞð1þ 2f ÞV 3 � sð1� 2f Þ�

4afsð2� sÞV3 þ s2 þ 2ð1� sÞ½1� aþ 2f ð1þ aÞ�g
.

(22d)
Finally, given V 3 and V2,

V4 ¼
V2f2sV3 þ ð2� sÞ½1� aþ 2f ð1þ aÞ�g

sð1þ aÞð1� 2f Þ
. (22e)

The speciation equilibria exist whenever the solutions of
the above equations are biologically meaningful (i.e.
0pjV2j;V 3;V4p1).

A.4. Speciation equilibria when f ¼ 0

Straightforward calculations show that V3 is given by a
positive solution of the quadratic

s2ð1�mÞV2
3 þ B1V 3 þ B0 ¼ 0 (23a)

satisfying 0pV 3p1. Here,

B1 ¼ sð2� sÞmð1þ r�mÞð1� aÞ, (23b)

B0 ¼ rmð1� aÞ½s2 þ 2ð1� aÞð1� sÞ�

� s2ð1�mÞ½1�mð1� aÞ�. ð23cÞ

Given V 3, the value of V2 can be found from

V2
2 ¼ s½1�mð1� aÞ�2

sV 2
3 þmð2� sÞV3 � sð1�mÞ

C2u2
3 þ C1u3 � C0

,

(23d)

where

C2 ¼ s2ð1� 2mÞ2,

C1 ¼ sð2� sÞm½1� 4mð1�mÞð1� aÞ�,

C0 ¼ s2ð1�mÞf1� 4m½1�mð1� aÞ�g

� 4m2að1� aÞð1� sÞ.

Finally, given V 3 and V2,

u4 ¼
V 2½sV3 þmð2� sÞð1� aÞ�

s½1�mð1� aÞ�
. (23e)

The speciation equilibria exist whenever the solutions of
the above equations are biologically meaningful (i.e.
0pjV2j;V 3;V4p1).
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