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a b s t r a c t

More than half a century has now elapsed since coalition or alliance formation theory (CAFT) was first

developed. During that time, researchers have amassed a vast amount of detailed and high-quality data

on coalitions or alliances among primates and other animals. But models have not kept pace, and more

relevant theory is needed. In particular, even though CAFT is primarily an exercise in polyadic game

theory, game theorists have devoted relatively little attention to questions that motivate field research,

and much remains largely unexplored. The state of the art is both a challenge and an opportunity. In

this review we describe a variety of game-theoretic and related modelling approaches that have much

untapped potential to address the questions that field biologists ask.
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1. Introduction

Coalition and alliance formation is the essence of political
society, both in humans (Riker, 1962; Rubin, 2002) and in other
primates (Maestripieri, 2007). It is a fundamentally strategic
process, and so one would expect the theory of games to have
much to say about it—especially the theory of cooperative games,
because it is in this context that the word coalition has most been
used by game theorists. The truth, however, is rather the oppo-
site: game theorists have devoted relatively little attention to
questions motivating field research on coalition or alliance
formation among primates and other animals, and cooperative
game theory has arguably had least to say. More relevant theory
is needed, and in this review we describe the challenge. Through-
out, we will find it convenient to refer to coalition or alliance
formation theory as CAFT for short.

Coalition means different things to different people (e.g., Baker,
1981). In ethology, a coalition is usually defined as a joint aggression
between at least two individuals against a common target, with
alliance reserved for longer term relationships within which coali-
tions may occur (Noë, 1986; de Waal and Harcourt, 1992): alliances
may overlap, whereas coalitions are mutually exclusive. In sociology,
Gamson (1961), who regarded coalitions as ‘‘temporary, means
oriented, alliances,’’ defined a coalition more broadly as ‘‘the joint
use of resources by two or more social units.’’ Either way, a de facto
difference between coalitions and alliances is in how long they last,
and the essence of both is cooperating to contest or defend a resource
against conspecifics. This article is primarily about coalition or
alliance formation in the ethological sense. Such collaborations have
now been observed in numerous mammalian taxa including primates
(de Waal 1998a,b; Perry, 2008), cetaceans (Mann et al., 2000) and
social carnivores (Zabel et al., 1992; Smith et al., 2010), typically for
access to females among males but to food among females. On the
other hand, there are also taxa, e.g., horses (Feh, 1999) and birds
(Duval, 2007), in which observed alliances may conform more readily
to the sociological definition.

Many coalitions form among non-kin, and these are the primary
focus of our review. In primates, for example, where there is strong
bias towards female philopatry, most adult males are unrelated. Even
in chimpanzees, where females disperse, coalition partners are not
very likely to be related (Langergraber et al., 2007); and primates
anyhow have limited kin discrimination (Noë, 1986; Chapais, 1995).
We are most interested in coalitions whose targets belong to the
same social group, as is typical for mammalian taxa. Coalitions in
other taxa more likely involve neighbors allying for joint defense
against an intruder, for example, in passerines (Elfström, 1997) or
crustaceans (Backwell and Jennions, 2004; Detto et al., 2010).

Coalition formation is cooperation with conspecifics, but it is
also cooperation against conspecifics, in contests of one form or
another (Konrad, 2009). Accordingly, we do not cover the vast

literature on the evolution of cooperation, which primarily dis-
cusses cooperation against heterospecifics or the environment in
terms of mutualism versus reciprocity or other categories
(Doebeli and Hauert, 2005; Dugatkin, 1997; Frank, 1998;
Lehmann and Keller, 2006; Mesterton-Gibbons and Dugatkin,
1997; Taylor and Nowak, 2009; West et al., 2006, 2007). There
is now fairly widespread agreement that opportunistic coalition
formation is supported by mutualism, with little scope for free
riding (Clutton-Brock, 2009; Tomasello, 2009); even long-term
alliances may be more realistically interpreted as mutualistic than
as examples of direct reciprocity (de Waal, 1991, pp. 152–153;
Chapais, 1995, p. 130; Clutton-Brock, 2009, p. 54). We align
ourselves with this consensus. In other words, we largely assume
that fitness benefits are direct (Hammerstein and Leimar, 2006).

To predict how coalition structure depends on an initial
distribution of strength has been a primary goal of CAFT ever
since pioneering work on triads by Caplow (1956, 1959) and later
Gamson (1961) in sociology. We describe this work in Section 2.
Caplow and Gamson had humans largely in mind, but Caplow
(1968, pp. 41–48) also discussed the ‘‘apish tricks’’ of rhesus
monkeys and baboons. Both scientists were thoroughly au fait
with the game theory of their day, yet did not use it to reach their
predictions. Nevertheless, their predictions have subsequently
been incorporated into the framework of cooperative game
theory, as we describe in Section 6.4.1.

From our perspective, it is useful to have a single word or phrase
that stands for strength or skill or fighting ability, or whatever it is
that varies among individuals and primarily determines an indivi-
dual’s ability to control a resource. For this purpose, we follow Parker
(1974) in using the term resource holding potential, or RHP for short,
but we also extend its usage from individuals to coalitions. Thus the
first primary goal of CAFT has been to predict how coalition structure
within a group depends on the initial RHP distribution of the group’s
constituent members.

Animals observed forming coalitions are typically embedded
in social hierarchies. Thus a second and related primary goal of
theory has been to predict how coalition structure depends on
rank. Three kinds of coalition have been singled out for special
attention, usually but not invariably involving a pair of animals
against a lone target. In the terminology of van Schaik et al.
(2006), they are all-up coalitions, which pit subordinates against
animals of higher rank; all-down coalitions, which pit animals of
high rank against subordinates; and bridging coalitions, which pit
animals against those of intermediate rank. In the terminology of
Chapais (1995), the same three kinds of coalition are called
revolutionary, conservative and bridging, respectively. Either
way, a second primary goal of CAFT has been to predict the
factors that favor these three kinds of coalition. Because an all-up
coalition need not change the rank of the target (Alberts et al.,
2003), however, we prefer the terminology of van Schaik et al.
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More generally, the goal of CAFT is to predict coalitional
structure as a function of key ecological factors, of which RHP
and rank are merely the two most salient. Relevant models can be
roughly categorized as verbal, back-of-the-envelope (Swartz,
2003), analytical, or computational, and it is convenient for us
here to adopt this categorization, despite its imperfections. Each
kind of model is suited to a different purpose, and each has its
own advantages and limitations. As Noë (1990, p. 79) has long
recognized, encounters among individuals in conflict over a
resource have at least three phases: an associative phase, an
antagonistic (but potentially collaborative) phase, and an alloca-
tive phase (which may involve bargaining). Adding a dissociative
phase would create a four-phase process, but we prefer to think in
terms of a single dynamics of association and dissociation, in
which the other two phases can be embedded. Any of the phases
may involve strategic behavior. But incorporating all three into a
single model is difficult, and has not yet been found conducive to
tractable analytical models. For that reason, analytical models
have tended to focus on a particular phase, whereas computa-
tional models have tended to be less constrained.

The above considerations are reflected in the structure of our
review. In Section 2, we discuss verbal models, before proceeding
to back-of-the-envelope models (Section 3) and a discussion of
polyadic games in general (Section 4). Thereafter, we discuss
analytical models of the antagonistic (Section 5), allocative
(Section 6) and associative (Section 7) phases, before proceeding
to a discussion of computational models (Section 8). Section 9
looks to the future.

2. Verbal models of coalition formation: early CAFT

Theory of coalition formation begins with the study of the
triad. If X, Y and Z are the RHPs, in non-increasing order, of three
individuals A, B and C, respectively, then four possible orderings
are X¼Y¼ Z, X ¼ Y4Z, X4Y ¼ Z and X4Y4Z; in the last two
cases, X may be either greater than, less than, or equal to Y + Z, so
that in all there are eight types of triad. The five possible coalition
structures are B and C against A, denoted BC; A and C against B,
denoted AC; A and B against C, denoted AB; three unallied
individuals, denoted by I; and a ‘‘grand coalition’’ of three,
denoted G. To predict which of these structures emerges in the
long run, Caplow (1956, 1959) assumed in essence that a stronger
party can control a weaker party and seeks to do so; that all
individuals prefer more control to less, and are indifferent
between ‘‘internal’’ and ‘‘external’’ control (see below); that RHPs
are additive; and that I is the initial configuration.

Consider, for example, Case 6 of Table 1, where X4Y4Z and
XoYþZ. Individuals can be dominated either internally, i.e.,
within a coalition, or externally, i.e., as the target of a coalition
that is stronger than the individual. In Case 6 no individual can
externally dominate the other two, and no individual can be
internally dominated within I, hence an alternative to I is
preferred by each individual. In G, A would internally dominate
both B and C; however, to prevent external domination by B and C

acting jointly, A prefers either AB or AC to G, but is otherwise
indifferent. Likewise, C is indifferent between AC and BC; either is
preferable to G, because externally dominating one individual
while being internally controlled by the other is better than being
internally controlled by both. But B has a distinct preference: BC

gives B both internal control over C (because Y4Z) and external
control over A (because YþZ4X), whereas either AB or G leaves B

dominated by A, despite control over C. Thus AB will not emerge,
because A’s preference for it is not reciprocated by B; however, C ’s
preference for AC or BC is reciprocated by, respectively, A or B, so
that either AC or BC is to be expected. Caplow effectively assumes

that both are equally likely. Hence, if r denotes a vector of
probabilities for coalition structures I, BC, AC, AB and G, respec-
tively, then Caplow’s predicted outcome for Case 6 is
r¼ ð0,12 ,1

2,0,0Þ. Similarly for the other seven cases. A conclusion
that Caplow drew from his theory is that surprisingly often
weakness is strength.

Vinacke and Arkoff (1957) devised a laboratory experiment to test
Caplow’s theory. Generally the results supported the theory, except
in Case 6 discussed above, where r¼ ð 1

45 ,59
90 ,2

9 , 1
10,0Þ was observed.

Gamson (1961, p. 379) interpreted this outcome as support for his
own theory, which predicts r¼ ð0,1,0,0,0Þ in Case 6, and in every
other case agrees with Caplow. Gamson’s theory assumes that
participants expect others to demand a payoff share proportional to
resources contributed, and that participants maximize payoff by
maximizing share, which favors the cheapest winning coalition if
the total payoff is held constant. In Case 6, because X4Y implies both
YþZoXþZ and Z=ðYþZÞ4Z=ðXþZÞ, BC both is cheaper than AC

and yields a higher payoff to C.
Chertkoff (1967) argued that a revised version of Caplow’s theory

is superior to Gamson’s, and Walker (1973) later refined the theory in
accordance with Chertkoff’s key observation, essentially just that it
takes two to tango: formation of a coalition requires reciprocation. For
reasons given above, in Case 6, if A (being indifferent) offers a
coalition to each of B and C with probability 1

2 and C likewise offers
a coalition to each of A and B with probability 1

2, while B offers a
coalition to A and C with probabilities 0 and 1, respectively, then the
probabilities of coalition structures AB, AC and BC are, respectively,
1
2 � 0¼ 0, 1

2 �
1
2 ¼

1
4 and 1 � 1

2 ¼
1
2. With probability 1

4, however, A makes
an offer to B, B to C and C to A, so that no coalition forms. Then each
individual ‘‘must decide between continuing the present negotiations
or switching to the other player’’ (Walker, 1973, p. 410); note that for
B, AB is better than I, because it prevents external domination by C

through AC. Because the situation is symmetrical, Walker assumes
that BC, AC and AB in this ‘‘cyclic’’ case are equally likely to form. Thus
the total probability of BC is 1

2 þ
1
3 �

1
4 ¼

7
12; and similarly for the other

cases, yielding r¼ ð0, 7
12 ,1

3 , 1
12,0Þ. This prediction was remarkably close

to the frequencies observed by Vinacke and Arkoff (1957).
Willis (1962) attempted to extend Caplow’s theory from the

triad to the tetrad, but experiments offered only limited support

Table 1
Coalition structure probability vectors predicted by Caplow’s theory. BC denotes a

coalition of the (two weakest) individuals B and C, whose RHPs are Y and Z,

respectively, against the (strongest) individual A whose RHP is X, and similarly for

AC and AB; I denotes three unallied individuals, i.e., no true coalition; and G

denotes the ‘‘grand’’ coalition of all three individuals. Note that in Cases 5 and 8, A

is a dictator. The last column indicates the labelling used by Caplow (1959, p. 490),

which differs from ours. Caplow (1956) formulated his original theory for what he

subsequently called ‘‘continuous’’ triads, where the object is ‘‘to control the joint

activity’’ of an enduring triad and ‘‘to secure control over rewards which are found

within the situation itself’’ (Caplow, 1959). In effect, Caplow first formulated a

theory of alliances. He later revised his theory to account for ‘‘episodic’’ or

‘‘terminal’’ triads, and drew different conclusions for one or the other in Cases

2–4, 6 and 7. From our point of view, his revision merely emphasizes that coalition

formation is highly context-dependent.

Case Ordering Sign of

X�Y�Z

Probabilities (r) Caplow

type

I BC AC AB G

1 X ¼ Y ¼ Z – 0 1
3

1
3

1
3

0 1

2 X ¼ Y4Z – 0 0 1
2

1
2

0 3

3 X4Y ¼ Z – 0 1 0 0 0 2

4 0 0 0 1
2

1
2

0 8

5 + 1 0 0 0 0 4

6 X4Y4Z – 0 1
2

1
2

0 0 5

7 0 0 0 1
2

1
2

0 7

8 + 1 0 0 0 0 6
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for the extended theory, and it has not been developed since. Of
many factors limiting its scope, perhaps the most critical is that it
is purely ordinal and thus ignores the magnitude of RHP differ-
ences: only the sign of X�Y�Z in the third column of Table 1 is
allowed to have an effect. On the one hand, it is unfortunate that
this line of inquiry was abandoned so early, because Caplow and
Willis framed a central issue that remains to be resolved: How
should coalition structure in triads and tetrads depend on an
initial RHP distribution? On the other hand, there is only so far
one can go with verbal theory. Significant further development
depends on mathematization—and hence on game theory, which
we review in context in Section 4. We revisit Caplow’s theory in
Section 6.4.1.

3. Back-of-the-envelope models: identifying key
determinants

Very simple analytical models can identify key determinants
of coalition formation with minimal calculation. For example, to
establish as expeditiously as possible that variance in a Caplovian
triad is too important to neglect, we can proceed from Section 2 as
follows. Suppose that the benefits of occupying the alpha, beta
and gamma roles in a dominance hierarchy are 1, b and 0,
respectively, where bo1; and that initially these roles are taken
by Players 1, 2 and 3, respectively. Assume that there is zero cost
to bargaining, and that the cost c of fighting as one of a pair
against the remaining individual is independent of RHP. Also
assume that Player 1 will always accept an offer from Player 2 to
exclude Player 3, or—if Player 2 is unwilling to make a pact—from
Player 3 to exclude Player 2. This assumption enables us to focus
directly on the following question: when is it strategically stable
for Players 2 and 3 to unite against Player 1?

First suppose that relative ranks within coalitions are fixed,
with Player i outranking Player j for all io j. Let Player 2 offer the
coalition {2,3} to Player 3, and let p1

23 denote the probability that
it defeats Player 1. If Player 3 accepts, then with probability p1

23

Player 2 becomes an alpha individual, Player 3 the beta individual,
and Player 1 the gamma individual; whereas with probability
p23

1
¼1�p1

23 Player 1 remains the alpha, Player 2 the beta and
Player 3 the gamma. Thus the reward to Player 3 from coalition
{2,3} is p1

23(b�c) + p23
1 (0�c)¼ p1

23b�c. If Player 3 were instead to
accept the offer of coalition {1,3} from Player 1 (whose offer of
{1,2} to Player 2 is implicitly rejected by Player 2’s offer of {2,3}
to Player 3), then, using analogous notation, with probability
p2

13 Player 1 remains the alpha, Player 3 becomes the beta
and Player 2 the gamma; whereas with probability p13

2
¼ 1�p2

13

Player 2 becomes the alpha, Player 1 the beta and Player 3 the
gamma. Thus the reward to Player 3 from coalition {1,3} would be
p2

13(b �c) + p13
2 (0�c)¼ p2

13b �c. Clearly, Player 3 should agree to
{2,3} only if p23

1 4p13
2 . But it is reasonable to assume that this

condition never holds, e.g., if probabilities are proportional to RHP,
so that

p23
1 ¼

YþZ

XþYþZ
, p13

2 ¼
XþZ

XþYþZ
: ð1Þ

Now suppose, by contrast, that relative ranks within coalitions
are not fixed, and that Player 2 offers to share coalitional benefits
evenly with Player 3; but continue to assume, for the sake of
simplicity, that Player 1 makes no such offer. Then the rewards to
Player 3 from coalitions {2,3} and {1,3} become p23

1 ð
1
2 f1þbg�cÞþ

p1
23ð

1
2 b�cÞ ¼ 1

2 p23
1 þ

1
2b�c and p13

2 ðb�cÞþp2
13ð0�cÞ ¼ p13

2 b�c, respec-
tively, from which Player 3 should form a coalition with Player 2 if
boðYþZÞ=ðX�YþZÞ by (1). Similarly, Player 2 should form a
coalition with Player 3 if boðYþZÞ=ðX�ZþYÞ. The second of these
inequalities implies the first. Hence {2,3} is strategically stable if

bo ðYþZÞ=ðX�ZþYÞ. The smaller the variance, or the smaller the
value of b, the more readily this condition is satisfied; in
particular (because bo1), it must be satisfied if the strongest
individual is less than twice as strong as the weakest. (If Player 2’s
offer to Player 3 is the proportion Z=ðYþZÞ instead of 1

2, then the
condition instead becomes bo ðZðYþZÞÞ=XY , which requires a
lower b, but is again always satisfied if Xo2Z.) The model also
incidentally demonstrates that if costs are assumed to be inde-
pendent of RHP, then the result is the same as if costs are
assumed to be zero.

Other key determinants of coalition formation can be likewise
identified through back-of-the-envelope models. For example, for
a model that focuses on rates of encounter during resource
utilization, Connor and Whitehead (2005) have established that
alliance formation can be favored only if the proportion of an
animal’s resources obtained competitively is at least 1

2, and likely
much higher. They exploit their result to argue that alliances
should start to form when the mean number of animals compet-
ing for a resource increases above about 0.7–2.0, and that
differences in encounter rate or resource utilization time can
explain why alliances are more widespread among males than
among females in odontocete fission–fusion societies.

4. Polyadic games

A game in the mathematician’s sense is a model of strategic
interaction, which arises when the outcome of one individual’s
actions depends on actions taken by others. From this definition
we readily infer what the main ingredients of a game must be. We
discuss each in turn and in context. For further discussion of
game-theoretic concepts see, e.g., Mesterton-Gibbons (2001),
Webb (2007), Peters (2008) or Sigmund (2010).

4.1. The players

The first main ingredient is a set of n interacting individuals, of
whom m (rn) could form a coalition. These individuals are the
players; the set of all players is usually denoted by N, i.e., N¼

{1, y, n}. Players may be either actors with specific RHPs and
(possibly) other individual characteristics, or individuals whose
RHPs and other characteristics are randomly drawn from a large
population. In the latter case, the game is called a population
game. There does not seem to be a standard phrase to distinguish
the former case; but such a phrase would be useful, and so here
we refer to games among specific actors as community games.
Broadly speaking, community games are more the province of
economic game theory (Myerson, 1991; Peters, 2008), and popu-
lation games are more the province of evolutionary game theory
(Maynard Smith, 1982; Hofbauer and Sigmund, 1998; Mesterton-
Gibbons, 2001; Sigmund, 2010; Szabó and Fáth, 2007).

Much of evolutionary game theory assumes that interaction
among individuals is either dyadic (n¼2) or effectively so; for
example, in some spatial games, effects of interacting with several
neighbors are captured by comparing the outcomes of independent
dyadic interactions with each neighbor (Nowak, 2006; Sigmund,
2010). However, any theory of coalition formation must allow for
the possibility that 1omon (without precluding m¼1 or m¼n).
Accordingly, we restrict our scope to interaction in polyads (groups
of more than two), assuming throughout that nZ3.

4.2. Strategies

A second main ingredient is a strategy set, through which
players interact. A strategy set implies an information structure;
for example, individuals can base decisions to be aggressive on
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one another’s RHP only to the extent that RHP is observable.
A strategy set must be consistent with the cognitive ability of
players, for example, whether they show ‘‘triadic awareness’’ (de
Waal, 1998a; Perry et al., 2004; DeDeo et al., 2010).

Because different strategies—i.e., different plans for conditioning
behavior on available information—can lead to the same action,
strategies in nature are not in general observable, although we can
still observe the outcomes to which strategy combinations lead.
Moreover, in some game-theoretic models, strategy is only implicit:
the spotlight instead shines directly on outcomes. In games of
coalition formation, the outcomes of interest are coalition structures.

Tractable models require tractable strategy sets (regardless of
whether the models are analytical or computational). There is
fortunately now considerable evidence that humans and other
animals tend to use ‘‘fast and frugal’’ heuristics (Gigerenzer,
2008), as opposed to very sophisticated strategies, for strategic
interaction. Plausible strategy sets for the antagonistic phase are
typically based on broad regularities or ‘‘stylized facts’’ (Kaldor,
1963; Gächter and Herrmann, 2006) distilled from empirical
evidence; for example, evidence that players of lower RHP are
more likely to form coalitions has been found in both chimpan-
zees (Watts, 1998) and humans (Benenson et al., 2009), and can
be used to justify threshold strategies of the type assumed in
Section 5.2 below. Recently, DeDeo et al. (2010) have pioneered
inductive game theory, through which plausible strategies for the
associative phase can be inferred directly from time-series data.

4.3. Rewards

The third main ingredient is a reward function, which defines the
reward to each individual from every possible outcome—hence, in
games of coalition formation, from every possible coalition structure.
A reward function not only may depend on combinations of
strategies, but also is based on various assumptions about several
key components.

4.3.1. Pattern of interaction

A reward function is always predicated on a pattern of
interaction. For example, if no coalitions have formed among n

individuals contesting a resource, then it may be assumed that
their conflict is settled by a single polyadic scramble resulting in
outright victory for one of the individuals (Skaperdas, 1998; Tan
and Wang, 2010); or that it is settled by a round-robin tourna-
ment of dyadic fights (Mesterton-Gibbons and Sherratt, 2007;
Stamatopoulos et al., 2009); or that all multi-player fights start
with a dyadic conflict, but other individuals may subsequently
side with one ‘‘initiator’’ or the other (Gavrilets et al., 2008).

A generalization of Section 2’s two-to-tango rule, namely, that
a coalition forms if and only if all parties agree to it, is a standard
assumption; however, it is not universal (Yi, 1997). Various
restrictions on fission and fusion are possible. For example, Ray
and Vohra (1997) allow coalitions to break up into smaller
subcoalitions; whereas Tan and Wang (2010) assume that a
coalition cannot break up, once formed, although existing coali-
tions (including singletons) can agglomerate.

4.3.2. Synergy rules

In games of coalition formation, the reward function requires a
synergy rule for pooling RHPs. Let S be the RHP of a coalition that
forms among m individuals of mean RHP s ¼m�1ðs1þ � � � þsmÞ,
where si is the RHP of Player i. Throughout the biological, economic
and sociological literatures, the most widely adopted rule is that
S¼ms, i.e., the RHP of the coalition is the sum of the RHPs of its
members (e.g., Caplow, 1959; Skaperdas, 1998; Tan and Wang,
2010; van Schaik et al., 2004, 2006; Whitehead and Connor, 2005).

A non-trivial generalization is that S¼ qms (Mesterton-Gibbons and
Sherratt, 2007), where q�1 may be either positive (for synergy) or
negative (for antergy). Although q¼1 is so commonly assumed, there
is at least some evidence that qa1, e.g., qo1 for male savanna
baboons (Noë, 1994, p. 212).

A different generalization is that S¼mas, where a40
(Gavrilets et al., 2008). This rule reflects what is largely still called
a modified or generalized Lanchester model (Adams and
Mesterton-Gibbons, 2003; Plowes and Adams, 2005; Tanner,
2006), although it is now becoming known that Lanchester’s laws
(Lanchester, 1956; Kingman, 2002; Lepingwell, 1987) were inde-
pendently discovered by Osipov (Helmbold, 1993; Osipov, 1995).

None of these rules allows for synergy to be spatially hetero-
geneous. Yet it is known that small groups are able to defeat
larger groups near the center of their home range (Crofoot et al.,
2008). Such effects could perhaps be modelled by allowing q or a
in the synergy rules above to depend on location.

4.3.3. Allocation rules

In games of coalition formation, the reward function usually
requires allocation rules for apportioning the costs and benefits of
a coalition to its members. In principle, a rule need not be the
same for costs as for benefits; for example, in Camargue stallion
pairs guarding mares, a subordinate bears more of the costs of
engaging rivals and a dominant obtains more of the mating
benefits (Feh, 1999). In practice, however, either the same rule
is used in both cases; or costs are assumed to be zero, so that the
issue becomes moot.

A general form of the allocation rule adopted throughout the
literature is

di ¼
1

m
lþð1�lÞ

si

s

n o
, ð2Þ

where 0rlr1 and di is the proportion of benefit allocated to
Player i. Various desirable properties that this rule satisfies have been
characterized by Moulin (1987). If l¼ 1 (e.g., Bloch et al., 2007;
Gavrilets et al., 2008; Mesterton-Gibbons and Sherratt, 2007;
Sánchez-Pagés, 2007a), then the division of spoils is egalitarian. If
l¼ 0 (e.g., Garfinkel, 2004; Whitehead and Connor, 2005;
Stamatopoulos et al., 2009; Tan and Wang, 2010), then the division
of spoils is proportional to RHP. Finally, if 0olo1 (e.g., Nitzan,
1991; Noh, 2002; Sánchez-Pagés, 2007b), then the rule yields a
compromise, with proportion l allocated on egalitarian grounds, e.g.,
l¼ 1

2 (Komorita and Chertkoff, 1973, p. 153).
An exception to the need for allocation rules arises where a

contested resource is assumed indivisible and costs of fighting are
assumed to be zero (as in Section 5.1).

4.3.4. Costs of fighting

For the sake of tractability, costs of fighting may be either
completely absent from the reward function (e.g., Noh, 2002;
Sánchez-Pagés, 2007b; Skaperdas, 1998; Stamatopoulos et al.,
2009; Tan and Wang, 2010) or chosen primarily for analytical
convenience in framing a theoretical issue (e.g., Esteban and
Sákovics, 2003). Nevertheless, as in the case of strategies, typically
costs are based on stylized facts distilled from empirical evidence.

Among such stylized facts are that fights among more evenly
matched opponents take longer to settle (Enquist and Leimar,
1983), and fights between mismatched opponents tend to be of
short duration (Morrell et al., 2005). If Ds denotes the RHP
difference between two parties in conflict, then the aforemen-
tioned regularities support the assumption that the cost of fight-
ing has the form cðDsÞ, and decreases nonlinearly with jDsj at a
rate determined by a parameter k measuring sensitivity of cost to
RHP difference (Mesterton-Gibbons and Sherratt, 2007, 2009b).
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A related idea is that predictable fighting outcomes are less
costly to all participants. For Gavrilets et al. (2010), this observa-
tion justifies costs that are proportional to the probability of a loss
for the eventual winner.

Both ansatzes implicitly assume that costs of fighting are
primarily energetic, or at least that injuries are not serious.
Neither ansatz need apply to potentially lethal fighting between
neighboring groups of chimpanzees (Wilson and Wrangham,
2003). Where a coalition of size m1 confronts another of size
m2rm1, there is evidence that the chance of a fatality in—and
hence the fighting costs of—the smaller group increases with the
extent m1�m2 to which it is outnumbered, injury being rare if
m1 �m2 (Wilson et al., 2001).

4.3.5. Victory odds

A further component of the reward function is an assumption
about the complementary probabilities of victory in a contest
between opposing parties. The simplest choice is that the higher
RHP always wins (Whitehead and Connor, 2005; Konrad and
Kovenock, 2009). Again, however, the standard approach is to
base the assumption on stylized facts distilled from empirical
evidence. One such assumption is that the probabilities are
pð7DsÞ, where p is a sigmoidal function of RHP difference Ds

with pð0Þ ¼ 1
2 and pðDsÞþpð�DsÞ ¼ 1; and where p also has a

parametric dependence on a quantity r measuring the reliability
of RHP difference as a predictor of fight outcome, in such a way
that p-1

2 as r-0, whereas the higher RHP always wins as r-1.
For example, if RHP is distributed over ð0,1Þ, then one of several
suitable choices is the logistic function

pðDsÞ ¼
1

1þe�rDs
: ð3Þ

In the past, evidence for the assumption that p is a sigmoidal
function of RHP difference has come only from contests between
individuals (e.g., Pratt et al., 2003, p. 949). Recently, however,
Bissonnette et al. (2009b) have found evidence to support the
assumption in coalitionary behavior of Barbary macaque males.

An alternative assumption would be to make p a sigmoidal
function of RHP ratio, as in (5a) below. Where RHP is interpreted
as resource commitment, however, Hirshleifer (1989) argues that
RHP ratio has a ‘‘crucial flaw’’ which RHP difference avoids.

4.4. Solution concepts

The last main ingredient is a solution concept. In this regard, a
theoretical distinction is usually observed between cooperative
and non-cooperative play. In cooperative games, all agreements
are assumed to be exogenously binding. So strategy recedes to the
background, and an appropriate solution concept is a strategically
stable distribution of rewards—an outcome. Possibilities are
reviewed in Section 6.

By contrast, in non-cooperative games, any agreements must be
self-enforcing, and strategy is front and center. Then an appropriate
solution concept for community games is that of Nash equilibrium
(Nash, 1951), i.e., a strategy combination from which no individual
has a unilateral incentive to depart. Equivalently, a Nash equilibrium
is a vector of mutual best replies. If a game has several stages or
subgames, then each is required to preserve the best-reply property
of Nash equilibrium, which accordingly is said to be subgame-perfect.
(A sequence of best replies over several stages is obtained by use of
backward induction.)

Correspondingly, an appropriate solution concept for popula-
tion games is that of evolutionarily stable strategy, or ESS
(Maynard Smith, 1982). Population strategy v is an ESS if it does
not pay a potential mutant to switch from v to any other strategy;
v is a strong ESS if it is also uniquely the best reply to itself, and a

weak ESS if there is at least one alternative best reply, say u, but v

is better reply than u to all such u. Usually, an ESS is not directly
observable, but we can observe associated outcomes; for an
illustration of this point, see Mesterton-Gibbons and Sherratt
(2009b, pp. 270–272).

All of the above solution concepts are for analytical models.
Solution concepts for computational models are more ad hoc, but
are usually devised to capture emergent patterns or long-term
average behavior, in some appropriate sense. In computational
games of coalition formation, a reasonable goal is to obtain a
probability distribution over all possible coalition structures by
numerical experiment.

5. Analytical models of the antagonistic phase: mainly triadic
games

To make predictions about coalition formation within a group
of n individuals, one must obtain expressions for the reward to
each individual from every conceivable coalition structure, i.e.,
from every partition of the player set N. These expressions depend
upon specific assumptions about the pattern of interaction,
including informational ones. Here we describe three different
choices that have each led to tractable analytical models. For the
sake of clarity, we focus on a particular model of each type. In all
three cases, individuals contest a resource whose value is 1. The
resource may be either indivisible or divisible, depending on the
model. Which is more appropriate, even for males fighting over
females, is an open question: paternity is indivisible, but prob-
ability of paternity is not.

5.1. Full information with RHP explicit

The first possibility, which is that players have full information
about one another’s RHPs, gives rise to a community game, i.e., a
game among specific actors. A model developed by Tan and Wang
(2010) exemplifies the approach. This model, which builds on earlier
work by Skaperdas (1998), is the most recently published scion of a
venerable pedigree in the economics literature. It descends from
Olson and Zeckhauser (1966) and Tullock (1980) and includes Bloch
(1996), Noh (2002), Esteban and Sákovics (2003), Garfinkel (2004),
Bloch et al. (2007) and Sánchez-Pagés (2007a), among others. Earlier
contributions are reviewed by Sandler (1993).

Tan and Wang (2010) assume that players sort themselves into
coalitions to fight for control of an indivisible resource, and that
members of the winning coalition further sort themselves for
further fighting, until a single individual has won. If {C1, y, Ck} is
a coalition structure, i.e., if the player set N is partitioned into k

disjoint subsets as N¼ C1 [ C2 [ � � � [ Ck, then the probability of
victory for coalition Ci is assumed to be

pi ¼
hðSiÞPk

j ¼ 1 hðSjÞ
, ð4Þ

where h is a contest success function (Skaperdas, 1996), assumed
positive and increasing, and Sj is the RHP of Cj, assumed equal to
the sum of the RHPs of its members.

Assumptions about the pattern of interaction are specified by
Tan and Wang (2010) for arbitrary n and include that a coalition,
once formed, must fight as a unit unless, and until, it becomes the
winning coalition. For our purposes here, the key point is that
these assumptions allow every possible initial coalition structure
to be associated with a reward to each player from every such
partition. These rewards can then be compared to determine
whether a coalition structure is strategically stable.

Let pij denote the reward to Player j from coalition structure i.
Because the indivisibility of the resource precludes a grand coalition,
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for n¼3 the only possible coalition structures are those shown in the
second column of Table 2. Denoting the RHPs of Players 1, 2 and 3 by
X, Y and Z, respectively, from (4) we obtain the 4�3 matrix p in the
last three columns of Table 2. For example, if the coalition structure is
{{3},{1,2}}, then Player 3 fights alone against the coalition {1,2} and
wins with probability p33 ¼ hðZÞ=ðhðXþYÞþhðZÞÞ, by (4). If the
coalition wins, with probability 1�p33, then Player 1 fights Player
2 and wins with probability h(X)/(h(X) + h(Y)), again by (4). This
conditional probability must be multiplied by 1�p33 to obtain the
probability p31 that Player 1 obtains the resource, and similarly for
other cases.

The strategic implications of the reward matrix p are most
readily appreciated by choosing a particular form for h and
particular values for X, Y and Z. Two examples are given in
Table 3. In (a), if the opportunity to form coalition {2, 3} presents
itself to Players 2 and 3, then Player 3 will reject it because a
coalition with Player 1 is preferable (p23 ¼ 0:1354p13 ¼ 0:134);
and if the opportunity to form coalition {1, 3} presents itself to
Players 1 and 3, then Player 1 will reject it because a coalition
with Player 2 is preferable (p31 ¼ 0:4794p21 ¼ 0:477). However,
if the opportunity to form coalition {1, 2} now presents itself to
Players 1 and 2, then both will accept, Player 1 because
p31 ¼ 0:479 is the highest reward in the first column of the
matrix, and Player 2 because p32 ¼ 0:405 is the highest reward
in the second. So {{3},{1,2}} is the unique equilibrium coalition
structure. The model thus predicts an all-down coalition (assum-
ing that rank is correlated with RHP). The strongest individual is
still most likely to win, but Player 2’s probability of gaining the
resource has slightly increased, from 0.398 to 0.405, by virtue of
the coalition. In (b), on the other hand, similar reasoning shows
that the unique equilibrium coalition structure is {{1},{2,3}}: the
model predicts an all-up coalition. Note the important point that
these outcomes are independent of the order in which opportu-
nities for coalition formation present themselves to players.

The essential difference between these two outcomes is that
although h is increasing and satisfies h(0)¼0 in both cases, in (b)
h is always a convex function, whereas in (a) h fails to be convex
for small (positive) values of its argument. Tan and Wang (2010)
have shown more generally that for any contest success function

either of the form

hðsÞ ¼ sr , ð5aÞ

where r exceeds 1 and measures the reliability of RHP ratio
(Section 4.3.5), or of the form

hðsÞ ¼ egs�1, ð5bÞ

with g positive, if X4maxðY ,ZÞ, then {{1},{2,3}} is the unique
equilibrium coalition structure (by straightforward algebra; e.g., with
hðsÞ ¼ egs�1 in Table 2, p12�p32 equals ðegX�1ÞegY ðegY�1Þ2ðegZ�1Þ
ðegX�egZÞ divided by a positive denominator, and the numerator is
positive because X4Z). However, the function h for (a) in Table 3 is
not included in the class of functions defined by (5).

Tan and Wang (2010) proceed to establish a handful of further
results for the given h, some for n¼4, some for nZ3. For example,
for n¼4, when X, Y, Z and W, the respective RHPs of Players 1–4,
satisfy X4Y4Z4W , Tan and Wang (2010) show that if
X4ZþW , then the unique equilibrium coalition structure is
{{{2},{3,4}},{1}}; note that if the coalition defeats Player 1, then
the two weakest players are committed to taking on Player 2 as a
unit. If instead XoZþW , however, then the equilibrium coalition
structure is indeterminate (i.e., more sensitively dependent on h),
although it must exist and consist of two pairs. Again, for nZ5,
Tan and Wang (2010) show that convexity of h with h(0)¼0
guarantees that every player prefers some coalition to fighting
alone (so that the last row in Table 2 is always dominated by one
of the preceding rows), and that any equilibrium coalition
structure will contain only two coalitions (a result that is strongly
dependent on both the constant-sum reward structure and the
assumption that a larger coalition preserves any smaller coali-
tions from which it is formed). However, as Tan and Wang (2010)
remark, ‘‘the exact characterization of the equilibrium coalition
structure is very difficult.’’

The model developed by Stamatopoulos et al. (2009) is a
further example of the approach just described. The main differ-
ences are as follows. First, the model is purely triadic. Second, the
resource is divisible and is shared by a winning coalition,
proportionally to RHP. Third, if no coalition forms, then the
resource is contested by a sequence of dyadic fights (as opposed
to a scramble). Finally, assuming X4Y4Z, the complementary
probabilities of victory for a contest between two coalitions are
determined by (3) with r¼1/Z, as opposed to (4). The model
predicts that the unique equilibrium coalition structure is
{{1},{2,3}} if X is sufficiently large; {{1,2}, {3}} if X and Y are both
sufficiently small (i.e., sufficiently close to Z, given X4Y4Z); and
otherwise {{1,3}, {2}}. Thus (assuming rank to be correlated with
RHP) all-up, all-down and bridging coalitions are all possible.

On the one hand, these are clear predictions. On the other hand,
they are based on very special assumptions. In general, it is best for
costs and victory odds to depend on a ‘‘tunable’’ parameter that is
independent of RHP and can be matched to different ecologies (using
maximum-likelihood estimation or otherwise). For tractability,

Table 2
The reward matrix p.

Case i Coalition structure Reward to player j

j¼1 j¼2 j¼3

1 ff1g,f2,3gg hðXÞ

hðXÞþhðYþZÞ

hðYþZÞ

hðXÞþhðYþZÞ

hðYÞ

hðYÞþhðZÞ

hðYþZÞ

hðXÞþhðYþZÞ

hðZÞ

hðYÞþhðZÞ

2 ff2g,f1,3gg hðXþZÞ

hðXþZÞþhðYÞ

hðXÞ

hðXÞþhðZÞ

hðYÞ

hðXþZÞþhðYÞ

hðXþZÞ

hðXþZÞþhðYÞ

hðZÞ

hðXÞþhðZÞ
3 ff3g,f1,2gg hðXþYÞ

hðXþYÞþhðZÞ

hðXÞ

hðXÞþhðYÞ

hðXþYÞ

hðXþYÞþhðZÞ

hðYÞ

hðXÞþhðYÞ

hðZÞ

hðXþYÞþhðZÞ
4 ff1g,f2g,f3gg hðXÞ

hðXÞþhðYÞþhðZÞ

hðYÞ

hðXÞþhðYÞþhðZÞ

hðZÞ

hðXÞþhðYÞþhðZÞ

Table 3
Two examples of the reward matrix p with X¼ 0.7, Y¼0.6 and Z¼0.2.

Coalition structure Rewards to players 1, 2 and 3, respectively

(a) hðsÞ ¼ sinhðs0:95Þ (b) hðsÞ ¼ e0:5s�1

{{1},{2,3}} 0.462 0.403 0.134 0.460 0.415 0.125

{{2},{1,3}} 0.477 0.388 0.135 0.495 0.381 0.124

{{3},{1,2}} 0.479 0.405 0.116 0.489 0.408 0.103

{{1},{2},{3}} 0.470 0.398 0.133 0.479 0.400 0.120
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however, Stamatopoulos et al. (2009) assume that costs are zero or at
least independent of RHP (Section 3), while acknowledging that it is
better for the cost of a fight to be ‘‘an increasing function of the
strength of the opponent;’’ and they choose r¼1/Z in (3), precluding a
tunable reliability parameter that is independent of RHP. They may be
right to suppose that other choices will lead to qualitatively similar
results, but to us it seems unlikely that the coalition structure would
be independent of r.

5.2. Partial information with RHP explicit

The second possibility, that players have only partial informa-
tion about one another’s RHPs, gives rise to a continuous popula-
tion game in which a strategy is an RHP threshold, below which
an individual seeks to enter a coalition with others. A model
developed by Mesterton-Gibbons and Sherratt (2007, 2009a)
exemplifies this approach. It assumes that each member of a
triad knows only its own RHP, but that all three RHPs are drawn
independently from a common distribution with density g on
[0,1]. Let f(u,v) denote the reward to a focal u-strategist in a
population of v-strategists. For all (u,v), the joint sample space
[0,1]3 can be decomposed into a finite number K of mutually
exclusive events, each associated with a coalition structure. Let
Oiðu,vÞ denote the i-th such event; and let Pi(X,Y,Z) denote the
corresponding payoff to the focal individual, where X, Y and Z

again denote the RHPs of Players 1, 2 and 3, respectively. Then

f ðu,vÞ ¼
XK

i ¼ 1

ZZZ
ðx,y,zÞAOiðu,vÞ

Piðx,y,zÞgðxÞgðyÞgðzÞ dx dy dz: ð6Þ

Assumptions about the pattern of interaction are as follows.
Stronger animals tend to escalate when involved in a fight,
weaker animals tend not to escalate. If an animal considers itself
too weak to have a chance of being the top-ranking individual in a
dominance hierarchy that controls access to the resource, then it
attempts to form a coalition with both others: coalition means a
mutual defense pact and an equal share of benefits. As a propor-
tion of total group fitness 1, it costs y ðZ0Þ to attempt a coalition;
the attempt may not be successful, but if all agree to it, then there
are no fights.

If there is a dominance hierarchy with three distinct ranks
after fighting, then the alpha individual gets a (41

2), the beta
individual gets 1�a and the gamma individual gets zero. If there
is a three-way coalition or if the animals fight one another and
end up winning and losing a fight apiece, then each gets 1

3;
however, in the second case they also incur a fighting cost. If a
coalition of two defeats the third individual, then each member of
the pair obtains 1

2 while the individual obtains zero; and if the
individual defeats the pair, then it obtains a while each member
of the pair obtains 1

2ð1�aÞ. There is at least potentially a synergis-
tic effect, so that the RHP of a coalition of two whose individual
RHPs are S1 and S2 is q{S1+S2}, where q need not equal 1.

Fighting costs are specified as in Section 4.3.4 and are equally
borne by all members of a coalition. Victory odds are specified as
in Section 4.3.5, except that an incomplete Beta function is used in
place of (3), because RHP is distributed over [0,1].

Let u be the coalition threshold for a potential mutant (the focal
individual), whose RHP is X: if X fails to exceed u, then it attempts to
make a mutual defense pact with each of its conspecifics. Let v be the
corresponding threshold for the other two members of a triad, whose
RHPs are Y and Z. Then the set of mutually exclusive events with
associated coalition structures and payoffs is as shown in Table 4, and
the reward follows from (6) with K¼8.

For this game, an ESS is a strong ESS, i.e., a strategy v that is
uniquely the best reply to itself (f ðv,vÞ4 f ðu,vÞ for all uav). The
evolutionarily stable strategy set depends on seven parameters,
namely, c0 (maximum fighting cost), q (synergy multiplier), y (pact
cost), a (proportion of group fitness to a dominant), r (reliability of
RHP difference as predictor of fight outcome), k (sensitivity of
cost to RHP difference) and s2 (variance of distribution, assumed
symmetric). It is a complicated dependence, but it enables us to
calculate, among other things, the probability of an all-up coalition,
i.e., the probability that the two weakest animals will ally against
the strongest in an ESS population. An initially counterintuitive
prediction is that this probability is higher when qo1Fthat is,
when there exists a degree of antergy in combining RHPs—than
when q41 (synergy); and it is especially high when s2 and r are
both high. These are conditions that appear to characterize coali-
tions found in primate societies (Mesterton-Gibbons and Sherratt,
2007, pp. 284–285).

Potentially just as important, however, is the model’s predic-
tion that low values of a, c0 or r and high values of k or y all tend
to preclude the formation of a coalition at the ESS, and that no
coalition may form at the ESS even if y¼ 0 (Mesterton-Gibbons
and Sherratt, 2007, p. 281). There are indeed some species of
primate in which coalition formation is known to be rare, e.g.,
chacma baboons (Barrett and Henzi, 2006).

Coalitions between neighbors to deter an intruder have also been
modelled by the approach described above, with the modified
assumption that neighbors know one another’s RHPs, but not the
RHP of an intruder, and vice versa (Mesterton-Gibbons and Sherratt,
2009b). So far, the approach has been limited to triads; but it should
be possible to extend it to higher values of n, in particular to n¼4. A
particular reason for these extensions to be of interest is that the
number of essential ecological parameters increases far more slowly
than the number of possible coalition structures with n: the first
number increases by only 1 (for a new fitness-proportion parameter)
whenever n increases by 1, whereas the second number is the n-th
Bell number (Bell, 1934, p. 417).

5.3. Full information with RHP implicit: models of intervention

The third possibility, which is that RHP is not explicitly modelled
but players have full information about probabilities of victory, has

Table 4
Payoff to a focal u-strategist, Player 1, of RHP X whose partners, Players 2 and 3, are v-strategists of RHPs Y and Z, respectively, with D¼ qfXþZg�Y and

zðX,Y ,ZÞ ¼ apðX�YÞpðX�ZÞþ1
3fpðX�YÞpðZ�XÞpðY�ZÞþpðX�ZÞpðY�XÞpðZ�YÞgþð1�aÞfpðX�YÞpðZ�XÞpðZ�YÞþpðX�ZÞpðY�XÞpðY�ZÞg.

Case i Coalition structure Event Oiðu,vÞ Payoff Pi(X,Y,Z)

1 ff1,2,3gg Xou,Yov, Zov 1
3�y

2 ff1,3g,f2gg Xou,Y4v, Zov 1
2fapðDÞþ1�a�2y�cðDÞg

3 ff1,2g,f3gg Xou,Yov, Z4v P2ðX,Z,YÞ

4 ff1g,f2,3gg X4u,Yov, Zov apðX�qfYþZgÞ�cðX�qfYþZgÞ

5 ff1g,f2g,f3gg Xou,Y4v, Z4v �y
6 ff1g,f2g,f3gg X4u,Y4v, Zov ð2a�1ÞpðX�YÞþ1�a�cðX�YÞ

7 ff1g,f2g,f3gg X4u,Yov, Z4v ð2a�1ÞpðX�ZÞþ1�a�cðX�ZÞ

8 ff1g,f2g,f3gg X4u,Y4v, Z4v zðX,Y ,ZÞ�cðX�YÞ�cðX�ZÞ
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been used to model interventions and gives rise to a discrete
population game. A model developed by Johnstone and Dugatkin
(2000), which builds on earlier work by Dugatkin (1998), exemplifies
this approach.

Let Player 1 be the focal individual in a triad whose other
members are Players 2 and 3. Assumptions about the pattern of
interaction are as follows. Player 1 observes a fight between the
others and may or may not intervene, with a view to the effect on
its next fight, for which Players 2 and 3 are equally likely
opponents. The effect is mediated through winner and loser
effects (Rutte et al., 2006): a probability p of victory against an
untested opponent is raised to V(p) after a victory but lowered
to L(p) after a loss. If Player 1 decides to intervene on behalf of,
say, Player 2, then Player 2 is guaranteed to win against Player 3
(and vice versa); moreover, Player 2 willingly accepts the help,
and there is no possibility of a coalition {2,3} against {1}. Thus, in
modifying Table 2 for present purposes, the first thing we do is
delete its first row: {{1},{2,3}} cannot arise, the only coalition
structures being those listed in Table 5. Let the benefit of victory
(to Player 1 from its next fight) be 1, and let c be the cost of
intervention. Then, as in Section 5.1, we can associate a reward to
each individual from every possible coalition structure. Because
this is a population game, however, we are interested only in
rewards to the focal individual, Player 1. So, instead of a reward
matrix as in Table 2, we obtain the reward vector p in Table 5,
whose entries can be compared to determine whether interven-
tion pays; here p2 or p3, p23 and p32 denote the probabilities that
Player 2 or Player 3 defeats Player 1, Player 2 defeats Player 3 and
Player 3 defeats Player 2, respectively, absent winner and loser
effects. Because p23 + p32¼1, it follows that

p1�p3 ¼
1
2 p32fDðp3Þ�Dðp2Þg�c, p2�p3 ¼

1
2p23fDðp2Þ�Dðp3Þg�c,

ð7Þ

symmetrically, where D(p)¼V(p)�L(p) in essence implicitly mea-
sures the difference in confidence between winning and losing as
a function of prior RHP. If D is a decreasing function, then it pays
to intervene only on behalf of the stronger of the other two
players (a conservative coalition if Player 1 is the alpha), and only
if c is not too large; whereas if D an increasing function, then it
pays to intervene only on behalf of the weaker (a bridging
coalition if Player 1 is the alpha, an all-up coalition if Player 1 is
the beta). This is an intriguing result, but as Johnstone and
Dugatkin (2000) point out, the empirical literature offers essen-
tially no guidance as to whether D should be increasing or
decreasing—if either.

Despite many differences of detail, a recent model by Broom
et al. (2009) is essentially a further example of the approach just
described: a triadic model of intervention. Two big differences
are as follows. First, potential benefits of intervention derive from
relatedness between actors, as opposed to prior-experience

effects. Second, it is no longer assumed that an intervention is
guaranteed to be successful, i.e., two always beat one, against
which now there is solid evidence (Bissonnette et al., 2009b).
Instead, Broom et al. (2009) model the observed fight as a Hawk-
Dove contest, which a supported contestant is more likely to win.
The analysis turns out to be rather complicated, despite numerous
simplifying assumptions. But the model yields several intriguing
predictions, most notably that it is variance of relatedness within
a group—as opposed to degree of relatedness itself—that seems
to drive the likelihood of coalitions of this type.

6. Cooperative games: the allocative phase

Cooperative game theory is essentially a framework for division
of spoils among individuals who have already agreed to pool their
resources (Gilles, 2010; Kahan and Rapoport, 1984; Mesterton-
Gibbons, 2001; Myerson, 1991; Osborne and Rubinstein, 1994;
Owen, 1995; Peters, 2008; Ray, 2007). Here we assess the potential
relevance of this theory to models of coalition formation among
animals, as advocated, e.g., by Noë (1990).

The central concept is the characteristic function, introduced
by von Neumann and Morgenstern (1953), and usually denoted
by n. To each possible subset S of the player set N ¼{1, 2, y, n},
n assigns a reward nðSÞ that coalition S can somehow guarantee for
itself, even if all other players have formed a coalition against it;
this reward is assumed to be freely redistributable among the
members of S, yielding a cooperative game with ‘‘transferable
utility’’ or CGTU. Thus nðSÞ is determined by the RHP of S.
Nevertheless, a ‘‘grand coalition’’ of all n players is assumed to
have formed (perhaps voluntarily, perhaps enforced by an exter-
nal agent or circumstance); and within it, subcoalitions of fewer
than n players can use as bargaining leverage the RHP they would
have had without the others, if the others were not there. For
games of biological interest, after subtracting out the rewards that
individuals can guarantee for themselves, n can be ‘‘0–1 normal-
ized’’ (Aumann, 1989), so that nðNÞ ¼ 1 and nðfigÞ ¼ 0 for all iAN.
Let us define an imputation to be a reward vector x¼(x1, x2, y, xn)
such that

xiZ0 for all iAN, ð8aÞ

x1þx2þ � � � þxn ¼ 1: ð8bÞ

Here (8a) expresses individual rationality and (8b) expresses
group rationality (also called unimprovability or Pareto-optimal-
ity): by (8b), no player’s allocation can be increased without
decreasing another’s. Then a solution to a cooperative game is
an imputation satisfying various additional desiderata, corre-
sponding to different notions of what comprises a stable division
of rewards.

6.1. Constraints on excess

One such desideratum is that the excess

eðS,xÞ ¼ nðSÞ�
X
iA S

xi ð9Þ

of coalition S at imputation x be as low as possible to minimize
player dissatisfaction. In particular, it is desirable that the excess
be nonpositive for all possible S; that isX
iA S

xiZnðSÞ for all S�N: ð10Þ

When (10) holds, x allocates to each coalition at least as much
inside the grand coalition as it could have guaranteed outside it.
The set of all such imputations is said to form the core. The core
need not exist, which Herbers (1979) has used to argue that sex

Table 5
The reward vector p. The benefit to the focal individual from its next fight is 1 if it

wins, 0 if it loses. Hence all benefits have the form
P

l

P
jakqklpkjol for 2r j,k,lr3,

where ol is the probability that Player l is the next opponent, pkj is the probability

that Player k won against Player j, and qkl is the conditional probability that Player

l loses against Player 1 if k won against j. It is assumed that o2 ¼
1
2¼o3 with

p32 ¼ 0 in Case 1 and p23¼0 in Case 2.

Case i Coalition structure Reward to focal individual

1 ff1,2g,f3gg 1
2 f1�Vðp2Þgþ

1
2f1�Lðp3Þg�c

2 ff1,3g,f2gg 1
2 f1�Lðp2Þgþ

1
2f1�Vðp3Þg�c

3 ff1g,f2g,f3gg 1
2fp23f1�Vðp2Þgþp32f1�Lðp2Þgg

þ1
2fp23f1�Lðp3Þgþp32f1�Vðp3Þgg
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ratios of progeny in mound-building ant species exhibit fluctua-
tions because the sex ratio is not in evolutionary equilibrium; and
when the core does exist, for which sufficient conditions are
known (Aumann, 1989; Bondareva, 1963; Shapley, 1967), it need
not contain a single imputation. Either way, the maximum excess
over all coalitions can be minimized to yield a ‘‘higher order core,’’
called the nucleolus, which contains a unique imputation that
belongs to the core if the core exists.

Because the grand coalition is assumed to have formed,
however, the nucleolus is essentially incapable of predicting the
formation of a true coalition. To illustrate for n¼3, consider three
males of RHPs X, Y and Z in competition with a rival fourth male of
RHP W over the indivisible resource of a female in estrus, with
W4X4Y4Z and minðXþY ,XþZÞ4W4YþZ. Assume synergi-
city q¼1 (Section 4.3.2). Because the coalition {2,3} is weaker
than the rival, whereas either {1,2} or {1,3} is stronger, it is
reasonable to assume that nðf2,3gÞ ¼ 0 with nðf1,2gÞ ¼ nðf1,3gÞ ¼ 1.
Thus Player 1 is a veto player (Kahan and Rapoport, 1984; Noë,
1990), essential for a successful coalition in this game. The core
contains a unique imputation, namely, x¼(1,0,0). It predicts that
all the benefits go to Player 1; however, it cannot predict how.
Intuition suggests that the benefits should accrue to Player
1 through {1,2} or {1,3}, but neither of these true coalitions can
be predicted, because {1,2,3} is assumed to have formed.

The above example is closely based on behavior that Noë (1990)
observed in three male yellow baboons, called H5 (Player 1),
H6 (Player 2) and H7 (Player 3). H5 did indeed obtain most of the
benefits, and 60% of all coalitions included H5 and one other;
however, H5 did not monopolize benefits, and all possible coalitions
formed some of the time. In particular, H6 and H7 paired up about
20% of the time, and on one occasion this coalition was successful.
The key point is that CGTUs are principally concerned with
distributing the benefits of a pie that all have agreed somehow to
share, and so have relatively little to say about coalition formation
per se.

Similar remarks also apply to other cooperative game solution
concepts.

6.2. Constraints on unreasonableness

Another desideratum involves a consideration of all possible
orders in which the grand coalition could be assembled, one player
at a time. If, in any such order, S�{i} denotes the coalition that
Player i joins to form coalition S, then nðSÞ�nðS�figÞ is Player i’s
marginal worth to S. It is desirable that no player’s allocation at
imputation x should exceed that player’s greatest possible marginal
worth from a possible order of formation:

xirmax
SAPi
fnðSÞ�nðS�figÞg for all iAN, ð11Þ

where Pi denotes the set of all possible coalitions containing
Player i. The set of all such imputations is called the reasonable
set. Because marginal worth is a random variable over all possible
orders of formation, its expected value for each player can be
used to select a specific imputation from the reasonable set as
the solution concept. If all orders of formation are equally likely,
then that imputation is the Shapley (1953) value, for which x is
defined by

xi ¼
1

n!

X
SAPi

ð#ðSÞ�1Þ!ðn�#ðSÞÞ!fnðSÞ�nðS�figÞg, ð12Þ

where #ðSÞ denotes number of players in S.
Because of the fundamental tension between power and

equity already reflected in (2), the nucleolus and the Shapley
value almost never coincide; for example, the Shapley value of the
veto game described in Section 6.1 would be the imputation

ð23 ,1
6 ,1

6Þ. Broadly speaking, the first solution concept gives priority
to the most dissatisfied coalitions, whereas the second grants all
coalitions equal status.

The expected marginal worth of a player has an especially
appealing interpretation in so-called simple games (Taylor and
Zwicker, 1999), where every coalition is either winning or losing,
so that nðSÞ ¼ 0 or nðSÞ ¼ 1 for every S. Such games arise naturally
in the context of voting for or against a status quo; the veto game
discussed above is also a simple game. Let Pi denote the set of
coalitions in which Player i’s resources are crucial to victory, i.e.,
the coalitions that would become losing if Player i were removed.
Then (12) becomes the Shapley–Shubik power index

xi ¼
1

n!

X
SAPi

ð#ðSÞ�1Þ! ðn�#ðSÞÞ! ð13Þ

(Shapley and Shubik, 1954), which is the probability that Player i’s
vote is pivotal (in forming some coalition). It is, therefore, a
measure of Player i’s voting power; for example, the first baboon
in the veto game can be viewed as possessing 2

3 of the power to
change the status quo (from no female access to access for the
coalition).

The index above has been generalized, and numerous other
power indices have since been constructed (Holler and Owen,
2001). We revisit this topic in Section 6.4.1.

6.3. Constraints on transferable utility and negotiation

Transferable utility within a CGTU allows players to bargain as
subcoalitions within the grand coalition (as opposed to indivi-
duals). It effectively assumes that a unit of reward is worth the
same to every player. By contrast, the Nash bargaining solution
(Nash, 1953) or NBS for short, which is the vector x that
maximizes the product x1x2 yxn in (8), does not assume transfer-
able utility and thus allows rewards to be measured in different
currencies: it has the property of ‘‘scale invariance.’’ So it may
sometimes yield a more appropriate division of spoils when
favors of different kinds are being traded; however, the desir-
ability of scale invariance in general is controversial (Binmore,
2010, p. 1359).

At least partly because it is unclear how animals can negotiate
without language, controversy likewise surrounds the defensibil-
ity of the assumption of binding agreements that underpins
cooperative game theory (McNamara et al., 2006; Akc-ay and
Roughgarden, 2007b). In at least some cases, however, such
agreements can be enforced by simple mechanisms requiring
only a basic capacity to remember and punish defections; and in
other cases they can be supported by various non-cooperative
bargaining procedures (Binmore et al., 1986; Rubinstein, 1982;
Binmore, 2010).

Roughgarden et al. (2006), Akc-ay and Roughgarden (2007a),
Roughgarden (2009) and Akc-ay et al. (2009) have proposed using
the NBS to study social behavior in animals more generally. This
framework has potential to become polyadic. Nevertheless, it has
so far been developed only for the dyadic case and thus falls
largely outside our purview (Section 4.1), although the NBS can be
used as a submodel for dividing the spoils inside a dyadic
coalition that forms within a polyad.

6.4. Potential for application

A special difficulty with the characteristic function is that
assigned worths are assumed to be independent of coalition
structure; for example, in a group of four players, nðf1,2gÞ would
be the same, regardless of whether the coalition {1,2} were
embedded in the coalition structure {{1,2}, {3,4}} with a
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‘‘counter-coalition’’ {3,4} or in the coalition structure {{1,2}, {3},
{4}} with a pair of singletons. Moreover, as remarked above,
cooperative game theory has relatively little to say about coalition
formation per se, being principally concerned with distribution of
benefits.

6.4.1. Generalized power indices

Nevertheless, what limits the applicability of cooperative
game theory to coalition formation is not its concern with a
distribution of benefits to individuals—which, as we have seen, in
simple games can be interpreted as an index of power—but rather
that this index of power is associated with a particular coalition
structure, namely, the grand coalition. If instead an index of
power can be associated with each possible coalition structure,
then a comparison of these indices can be used to identify
transitions between coalition structures.

Consider once more Case 6 of Table 1 (Section 2), and let A, B

and C be Players 1, 2 and 3, respectively. Shenoy (1978, pp. 182–
191) has devised a Caplow power index, which is the vector of
proportions of all dominances a player achieves in a given
coalition structure. The relevant five vectors are listed as the
columns of Table 6(a); for example, in coalition structure BC,
A dominates no other, B dominates A (externally) and C (intern-
ally), and C dominates A (externally), so that the proportions of all
dominances for A, B and C are 0, 2

3 and 1
3, respectively. Suppose that

I is an initial configuration (as Caplow did). If coalition structure
AC is now offered, then it will be accepted by both A (because
2
340) and C (because 1

340), which makes B’s preferences irrele-
vant. Thus I is dominated by AC through {1,3}. No movement from
AC is possible, so AC is the final outcome. Likewise, I is dominated
by AB through {1,2}; however, AB in turn is dominated by BC

through {2,3}. Because no movement from BC is possible, this
time BC is the final outcome. Thus AC and BC, i.e., Caplow’s
predictions for Case 6, are the only undominated coalition
structures in a sense made precise by Shenoy (1978, 1979,
1980), who in this way recovers all of Caplow’s predictions within
the framework of game theory.

Shenoy’s approach is quite general: it identifies the undominated
coalition structures associated with any power index. In particular,
Shenoy has also devised an index to recover Gamson’s theory; for
Case 6 of Table 1, its unique prediction is BC, as confirmed by
Table 6(b). Also, for simple games, (13) generalizes to the idea that
individual power in any coalition structure (not just the grand
coalition) equals probability of being pivotal in reaching it (Aumann
and Dreze, 1974; Shenoy, 1979). This generalized Shapley–Shubik
index yields yet another prediction for Case 6 of Table 1, namely, that
any configuration except I or G is to be expected; see Table 6(c). Here
the underlying rationale is strategic symmetry of external control
(with an implicit assumption that internal dominance is not an issue
because players can bargain it away through a binding agreement): if
any two players can succeed in wresting a prize from a third, then it
should not matter who is one’s partner. Gamson (1961, p. 378) refers
to this prediction as ‘‘strict rationality theory.’’

6.4.2. van Schaik et al.’s model

The above considerations show that although cooperative
game theory is by no means an off-the-shelf tool for predicting
coalition formation, it has served to bring coherence to verbal
theory. It can also serve as a useful point of departure for other
models.

For example, van Schaik et al. (2004, 2006) applied excess-
minded thinking to a group of primate males ranked 1 through n

in a linear dominance hierarchy and competing for access to
females in estrus. Building upon earlier work by Pandit and van
Schaik (2003), van Schaik et al. assumed (8) to hold with
xi ¼ ð1�bÞxi�1 for 0rbr1, so that reward—in terms of propor-
tion of fertilizations—decreases with rank more rapidly when the
‘‘environmentally determined degree of despotism’’ b is larger.
With x thus determined, they define n so that (10) holds with
equality, and so every imputation belongs to the core.

To progress from here, van Schaik et al. (2004, 2006) assumed
such a high correlation of RHP with rank (Alberts et al., 2003) that
the RHP of coalition S is proportional to nðSÞ ¼

P
iA Sxi. They were

thus able to explore the ‘‘profitability and feasibility’’ of a
coalition of individuals occupying adjacent ranks against a lone
target. Such a coalition S is profitable for Player i if xt�xi exceeds
the cost of coalition formation, where t is ‘‘the targeted rank, i.e.,
the rank individual i would occupy as a result of a successful
coalition;’’ the coalition is feasible if nðSÞ�xt is sufficiently large;
and because x1, y, xn are now readily calculated in terms of b, m,
n and a (highly idealized) cost parameter C, it is possible to
identify regions of parameter space where coalitions are viable,
that is, both feasible and profitable. The model yields a variety of
interesting predictions. For example, rank-changing all-up coali-
tions should arise only if br1

2; moreover, they should be small
(dyads or triads), target the top ranker, and involve individuals
ranking just below it.

Both van Schaik et al. (2004) and Jones (2005, 2006) found a
relatively good fit between the model and data existing in the
literature. On the other hand, the model also predicts that rank-
changing bridging coalitions are not profitable at low b, contra-
dicting behavior recently observed in Barbary macaques
(Berghänel et al., 2010, p. 4). Furthermore, the model is predicated
on the assumption that xi decreases with i, contradicting recently
obtained results on chimpanzee paternity (Newton-Fisher et al.,
2010, p. 423, Fig. 3).

7. Analytical models of the associative phase: alliance
formation

There is no universal agreement on where to draw the line
between alliance and coalition, or even whether different words

Table 6

Power indices for Case 6 of Table 1. For iAfA,B,Cg and jAfI,BC,AC,AB,Gg, the term

in row i and column j of each matrix is the power of individual i in coalition

structure j. (a) The Caplow power indices. (b) The Gamson power indices (Shenoy,

1978, pp. 192–193) are based on the result that many (but not all) simple games

have a weighted-majority representation of the form [Q; w1, w2, y, wn], where wi

is the weight attached to Player i and a coalition is winning if the sum of its

members’ weights equals or exceeds the quota Q; for example, the veto game in

Section 6.1 has representation [3; 2, 1, 1], and the game considered in this table

has representation [5; 4, 3, 2]. The Gamson index is defined using these weights as

proportion of power in a winning coalition and otherwise zero. (c) The Shapley–

Shubik power indices.

I BC AC AB G

(a) The Caplow indices

A 0 0 2
3

2
3

2
3

B 0 2
3

0 1
3

1
3

C 0 1
3

1
3

0 0

(b) The Gamson indices

A 0 0 2
3

4
7

4
9

B 0 3
5

0 3
7

1
3

C 0 2
5

1
3

0 2
9

(c) The Shapley–Shubik indices

A 0 0 1
2

1
2

1
3

B 0 1
2

0 1
2

1
3

C 0 1
2

1
2

0 1
3
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are necessary; for example, Chapais (1995) and Duval (2007) use
alliance in either case, whereas Öst et al. (2003) and Olson and
Blumstein (2009) use coalition. In our lexicon, however, an
alliance is a longer-term relationship within which coalitions
may occur; and a key distinction is that alliances may overlap,
whereas coalitions are mutually exclusive. A further de facto
distinction is that alliances may develop through affinities of age,
gender, location, personality, shared interest or any other quality
that are independent of RHP. In other words, an alliance in its
purest form is a product of affinitive association or dissociation. In
principle, there need be no source of internal conflict. In practice,
conflict may arise, precipitating the formation of coalitions within
or across alliances. (Of course, coalitions may also form in the
absence of alliances, and members of alliances may cooperate in
ways that we would not call coalition formation.)

The associative phase of strategic interaction, which deals with
how individuals enter or exit interactions with collaborative potential,
is the one that has received least attention from game theorists, not
only in the context of CAFT (DeDeo et al., 2010) but also more
generally (Jasper, 2006). Nevertheless, there exist two literatures on
models of association and dissociation from which much of relevance
can be drawn. Our purpose here is a brief introduction that suggests
their potential. For further discussion of terms we use from network
theory see, e.g., Jackson (2008) or Newman (2010).

7.1. Models of coagulation and fragmentation

The first literature originates with a 1916 study of polymers by
Smoluchowski (Wattis, 2006). If coalitions may form either unin-
tentionally or intentionally (Wilke, 1985), then models of coagulation
and fragmentation are arguably those which embody the least
intentionality, and can thus serve as null models, to which other
models are compared. They have already found their way into the
social sciences (Eguı́luz and Zimmermann, 2000; Bohorquez et al.,
2009; Zhao et al., 2009) and should be attractive models in biology as
well, at least as minimal models or building blocks. But so far their
applications have been few (Gueron and Levin, 1995).

To describe these models in context, we start with n uncon-
nected individuals. They start to form coalitions, which coalesce
and fragment according to the following constraints: The network
is determined by binary bonds between individuals, and coali-
tions are connected components in which every pair is connected
(i.e., ‘‘cliques’’); coalitions merge due to random contact between
them; coalitions fragment for various reasons; and fragmenting
and coalescence of coalitions is instantaneous.

7.1.1. Merging

To specify the merging of coalitions we posit that a pair of
coalitions of sizes r and s merges into one of size r+s at rate mrs.
Typical assumptions (Aldous, 1999; Collet, 2004; Wattis, 2006)
are as follows:

(i) mrs¼constant (the Kingman coalescent). Coalitions merge by
contact with specific individuals, usually leaders or other
appointed representatives.

(ii) mrsprs (multiplicative, or Erdös–Renyi, coalescent). Coali-
tions merge due to random contact between arbitrary mem-
bers. This is the most common assumption.

(iii) mrsprgþsg. The parameter gA ½0,2� measures the degree of
homogeneity or hierarchical structure in a typical coalition.

7.1.2. Fragmentation

The easiest assumption is that coalitions fragment at random,
on the same time scale as they are formed. The crucial ingredient

is the fragmentation function, i.e., the distribution of the number
and sizes of the smaller coalitions that result. Some possibilities
are as follows:

(i) All smaller coalitions are singletons (Eguı́luz and Zimmermann,
2000). We call this model the EZ model. It was introduced to
study herding behavior on a stock market, and a more involved
version is used in the study of insurgency groups (Bohorquez
et al., 2009). At rate n, a random individual is chosen and its
group fragmented into individuals, while at rate 1�n two
individuals are chosen at random from two different groups,
and their groups are merged.

(ii) Splits are into two smaller coalitions, chosen at random
among available choices (Gueron and Levin, 1995). We call
this model the GL model.

(iii) A random number f of fragments is chosen, and any
individual chooses at random which fragment to join. This
may be called a multinomial model.

(iv) From isolated individuals a coalescing model is run on a
faster time scale.

7.1.3. Smoluchowski equations

The main analytical tool is the Smoluchowski coagulation–
fragmentation equation for ns, the average number of coalitions of
size s. With large n, and ignoring stochastic fluctuations, for the EZ
model in (i) above we obtain

dns

dt
¼�

nsns

n
þ
ð1�nÞ

n2

Xs�1

r ¼ 1

rnrðs�rÞ ns�r�
2ð1�nÞsns

n2

X
rZ1

rnr ð14aÞ

when sZ2 with

dn1

dt
¼
n
n

X
rZ2

r2nr�
2ð1�nÞ n1

n2

X
rZ1

rnr ð14bÞ

(Wattis, 2006). At equilibrium (dns/dt¼0) the equations can be
solved analytically, and for large n and small n one obtains a
power law:

ns � ne�ð1=4Þsn2

s�5=2

(D’Hulst and Rogers, 2000). This power law is the same as for a
model with no fragmentation, observed at time about n, i.e., the
critical Erdös–Renyi random graph (Durrett, 2007). Interestingly,
the 5

2 scaling law has been observed in the empirical data on sizes
of insurgency groups (Bohorquez et al., 2009), although there are
also significant deviations.

The Smoluchowski coagulation–fragmentation equation for
the GL model has different analytic properties (Ruszczycki et al.,
2009).

7.2. Affinitive network dynamics

A common assumption in evolutionary games is that indivi-
duals meet one another at random, whether in an infinitely large
or in a finite—but well mixed—population; in a spatially
extended system; or on a graph (Nowak, 2006; Szabó and Fáth,
2007; Sigmund, 2010). Such individuals would be as unallied as
possible. An alternative assumption is that individuals meet
assortatively, selecting their partners through various rules that
can be interpreted in terms of various degrees of intentionality.

For a group of n players interacting in dyads, Skyrms and
Pemantle (2000) operationalize this assumption by introducing a
matrix of what they called relative weights, but which we call
affinities. If the matrix is A, then aij is interpreted as the affinity of
Player i for Player j, and the probability that Player i is paired with
Player j in a dyadic interaction is made to depend on A. The
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simplest such rule is

ProbðPlayer i is paired to Player jÞ ¼
aijPn

k ¼ 1 aik

, ð15Þ

but Skyrms and Pemantle (2000) incorporate discounting of the past
by continuously decreasing the affinities aij with time, and various
other possibilities have now been explored as well (Skyrms, 2009). A
separate rule allows players to be influenced—e.g., through
imitation—by the strategies that other players are using, so that
choice of partner and choice of strategy co-evolve.

Each dyadic interaction is a subgame generating payoffs,
which are used to increment the affinities of the involved players
through a procedure analogous to reinforcement learning
(Kaelbling et al., 1996; Macy and Flache, 2002). As a consequence,
players learn to associate with partners yielding better payoffs
and to dissociate from partners yielding worse payoffs. In this
way, the model predicts the formation within a group of certain
clusters and networks, which may be interpreted as alliances.

Important insights emerge from this work. One is that the rate at
which partner choice evolves relative to that at which strategy
choice evolves is a critical parameter, and cooperation is favored in a
variety of models when this parameter is large—i.e., ‘‘free associa-
tion favors cooperation,’’ a result that Skyrms (2009) regards as a
robust theorem, sensu Levins (1966). Another insight is that even if
the system is guaranteed to approach an equilibrium, it may not be
a reliable guide to behavior observed on any reasonable time scale. A
similar approach is the focus of several recent game-theoretic
papers (Pemantle and Skyrms, 2004a,b; Pacheco et al., 2006, 2008;
Santos et al., 2006; Hruschka and Heinrich, 2006), and some results
have been obtained analytically. Nevertheless, the concept of
affinities yields greatest dividends when used in conjunction with
a computational model, as described in Section 8.1 below.

8. Computational models

With a computational approach the spotlight switches from
triads or tetrads to polyads of arbitrary size, and it becomes
possible to explore how the size distribution of coalitions or
alliances varies as a function of relevant ecological parameters.
Computational models are almost invariably agent-based models
(Epstein, 2006; Miller and Page, 2007), in which not only the
characteristics of every individual in a finite population, but also
their interrelationships are known at every time step, after being
drawn initially from a specified distribution and updated accord-
ing to various stochastic rules.

8.1. Gavrilets et al.’s model

Gavrilets et al. (2008) have extended the approach of Section 7.2
to deal with coalitionary conflict. Now affinities, which may be

positive or negative, control the probabilities of getting coalitionary
support as n individuals continuously engage in competition for
status and/or access to a limited resource. Individuals vary in RHP,
and time is continuous.

At a constant rate a, two randomly chosen individuals, say Players
i and j—the ‘‘initiators’’—engage in a conflict. For all other kAN,
Player k is aware of this conflict with constant probability o. For all
such k, whether Player k intervenes on behalf of either initiator, or
stays neutral, depends on hki and hkj, where in general hij is an
interference probability determined by a sigmoidal function of
affinity aij that is scaled by two parameters. A baseline interference
rate b controls the probability of interference on behalf of an
individual towards whom the affinity is zero; b can be viewed as a
measure of individual aggressiveness (i.e., readiness to interfere in a
conflict). A slope parameter Z controls how rapidly the probability of
interference increases with affinity; it can be viewed as a measure of
persuasiveness (i.e., ability to attract help).

As a result of interference, an initially dyadic conflict may trans-
form into a conflict between two coalitions. The RHP of a coalition
depends on its size and the individual RHPs of its members, e.g., as
described in Section 4.3.2. The probability that one coalition prevails
over another likewise depends on their respective RHPs, e.g., as
described in Section 4.3.5. Following a conflict resolution, the
affinities of all parties involved are updated. The affinities of winners
are changed by dww; those of losers by dll; those of winners to losers
by dwl; and those of losers to winners by dlw. These d values reflect
the effects of the costs and benefits of interference on future actions.
It is natural to assume that the affinities of winners increase (dww40)
and those of antagonists decrease (dwlo0,dlwo0). The change in the
affinities dll of losers can be of either sign, or zero. Coalitions are
assumed to form, and conflicts to be resolved, on a time scale much
faster than that of conflict initiation. Finally, to reflect a reduced
importance of past events relative to more recent events in control-
ling affinities, they decay towards 0 at a constant rate m (White,
2001).

Several conclusions emerge from this study. First, the model
shows the emergence of coalitions of friends supporting each
other in conflicts (Fig. 1). The size, RHP, and temporal stability of
alliances depend on various ecological parameters, and may vary
dramatically from one run to another, even with the same
parameters. Individuals belonging to the same alliance have very
similar social success, which is only weakly correlated with their
individual RHPs. That is, the social success of a player is now
determined, not by individual RHP, but rather by the size and RHP
of the alliance to which that player belongs. Individuals from
different alliances may have vastly different social success, so that
the formation of alliances does not necessarily reduce social
inequality in the group as a whole. As expected, increasing a or
reducing m promotes alliance formation. Most interestingly, some
characteristics exhibit phase-transition-like behavior as certain
parameters undergo small changes. In particular, Gavrilets et al.

Fig. 1. Interference matrices at time 1000. Values of hij are gray-scale coded from 0 (white) to 1 (black), with diagonal elements set to black. For display purposes, alliances

are ordered according to their clustering coefficients C(1) as in Whitehead and Connor (2005), so that stronger alliances occur first along the diagonal. Default set of

parameters: a¼ 1, b¼ 0:05, dww ¼ 1, dll ¼ 0:05, dwl ¼�0:05¼ dlw , Z¼ 0:5, m¼ 0:5. (a) n¼10. (b) n¼20. (c) n¼30. (d) n¼20, dll ¼�0:05. The interference matrices are

symmetric in this illustration because dwl and dlw have been chosen equal.
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(2008) have shown that including inheritance of social networks
may result in the emergence of a grand coalition of all n members
of the group. This behavior can be interpreted as ‘‘egalitarian
revolution’’ sensu Boehm (1999). Gavrilets et al. (2008) have
focused on the possibilities of stochastic equilibrium and cycling
in their model, using (analytical) mean-field approximations to
elucidate their extensive numerical simulations (Gavrilets et al.,
2008, Supporting information).

A particularly attractive feature of the approach adopted by
Gavrilets et al. (2008) is that it is both scalable and expandable. It
is scalable in that it can be generalized to larger groups, or groups
of groups, and potentially applied to modelling the origin and
evolution of states (Carneiro, 1970; Wright, 1977; Turchin, 2003,
2007; Marcus, 1992; Iannone, 2002; Rubin, 2002). It is expand-
able in that it allows for inclusion of additional features, such as
behavioral, genetic, social or cultural factors.

8.2. Other computational models

In an attempt at predicting alliance structure based on ideas
from physics and chemistry, Axelrod and Bennett (1993) posited
that observed configurations should minimize an ‘‘energy’’P

i,jsisjaijdijðXÞ over X, where A is an affinity matrix, D is a distance
matrix, s is a size vector and X is a coalition structure; here aij is
the ‘‘propensity’’ of actor i to align with actor j, and size and
distance may be broadly interpreted. This ‘‘landscape’’ model,
which evokes the adaptive landscape of Sewall Wright (Gavrilets,
2004; Ruse, 2009), has so far has been applied only within
business and politics (Axelrod, 1997). It was criticized and
reformulated by Galam (1996), and does not seem to have been
developed since. But we mention it for its potential relevance.

Whitehead and Connor (2005) have used an agent-based
model to confirm their prediction that alliances should start to
form when the mean number of animals competing for a resource
increases above about 0.7–2.0 (Section 3). Their simulations
explored various rules for joining and leaving alliances and
included costs of changing alliance, intrinsic costs of large
alliances and other factors that their analytical model ignored.

Most recently, Gavrilets et al. (2010) have built an agent-based
model of the evolution of societal complexity driven by warfare.
In their model, agents are spatially structured autonomous local
communities (e.g., villages), whereas coalitions (e.g., chiefdoms)
are represented as hierarchical trees that go through processes of
coagulation and fragmentation. Their model predicts continuous
growth and collapse in the size and complexity of early societies.

9. A look to the future

More than half a century has now elapsed since Caplow first
developed his theory. During that time, primatologists and other
field biologists have amassed a vast amount of detailed and
high-quality data on coalition and alliance formation (Barrett
and Henzi, 2006; Bissonnette et al., 2009b; Bissonnette, 2009;
Harcourt and Stewart, 2007; Mitani, 2006; Perry, 2008). But
models have not kept pace. Relatively little is understood, and
much remains largely unexplored. This state of the art is a golden
opportunity for theoretical biologists.

Analytical models in CAFT are still overwhelmingly triadic. The
reasons are partly empirical: two against one is the coalition structure
most commonly observed in nature (Bercovitch, 1988; Bissonnette
et al., 2009b; Smith et al., 2010), and studies exist in which most
coalitions involve only the three top-ranked individuals, or in which
ranks have been pooled as ‘‘high,’’ ‘‘medium’’ or ‘‘low’’ for statistical
purposes (de Villiers et al., 2003), so that a game among a population
of three different types becomes the appropriate model for aligning

predictions with available data. But the reasons are mainly theore-
tical: triads are both the simplest groups in which coalition formation
can be studied and the groups beyond dyads in which analytical
models of population games are most likely to be tractable, especially
when allowing for intrinsic variation among individuals. Moreover,
triads are large enough groups with which to address some funda-
mental questions. Recall from Section 2 that a triad of animals A, B

and C has five possible coalition structures, namely, I, BC, AC, AB

and G. If A, B and C are ranked in that order, then the five possible
structures correspond, respectively, to no coalition, an all-up coalition,
a bridging coalition, an all-down coalition, and universal sharing. Thus
many questions of interest to biologists—frequently questions about
cross-species differences in all-down versus bridging versus all-up
coalitions—can be well addressed within the confines of a triad.

One such question concerns the rarity of coalitions in chacma
baboons (Barrett and Henzi, 2006). An answer would require an
appropriate triadic model to identify an ecological parameter
regime associated with a very high probability of I, as suggested
towards the end of Section 5.2. Another such question is this:
What destabilizes the coalition and dominance structure of a
triad, and what is predicted to replace it? Nishida (1983) has
described a change in the dominance hierarchy of three adult
males in an habituated group of wild chimpanzees. Before the
disturbance there was a bridging coalition: the gamma male had
supported the alpha. But the gamma male switched his allegiance
to the beta when the beta attacked the alpha, giving rise to an all-
up coalition. After the disturbance, the former beta and gamma
were the new alpha and beta, respectively, with the former alpha
relegated to the bottom rung. In this case, an answer to the
question would require a triadic model to predict a switch from
AC to BC (and ideally a concomitant cyclic permutation of ranks).
This would be a dynamic prediction.

To date, only computational models of coalition formation have
been explicitly dynamic, in the sense that time is an included variable.
This reality reflects a wider trade-off in game theory at large. There
are indeed explicitly dynamic analytical frameworks (Hofbauer and
Sigmund, 1998; Nowak, 2006; Sigmund, 2010), but a typical model
treats individual variation only implicitly. Likewise, there are analy-
tical frameworks that model individual variation explicitly, such as
those discussed in Section 5, but a typical model is only implicitly
dynamic. Nevertheless, although dynamics are excluded from the
model itself, they can still be part of the larger story that the model is
used to tell. For example, in Table 3, if conditions favoring the contest
success function h for (a) suddenly switched to conditions favoring h

for (b), then the predicted coalition structure would suddenly switch
from ff3g,f1,2gg to ff1g,f2,3gg, i.e., from AB to BC; and it is not difficult
to imagine that a similar model could predict a switch from AC to BC,
as required above. Of course, Table 3 is merely a toy, but it illustrates
the possibilities of analytical models, especially triadic ones. Their
potential is far from fully exploited.

Thus triadic games have an important role to play in the
development of CAFT. Indeed Shubik (1998) has observed an
explicit distinction between few-person games of 4–20 indivi-
duals and three-person games, which in his view ‘‘call for a
special study.’’ It seems to us, however, that tetrads also call for a
special study, because they are the smallest groups in which
counter-coalitions can form. Willis (1962) attempted such a
theory (Section 2) early on; but the only subsequent develop-
ments are a few results of Tan and Wang (2010) described in
Section 5.1, and further results are desirable.

On the other hand, there are questions that cannot be
addressed within the confines of the triad or tetrad. Larger
polyads are needed, for example, to explain that the highest
frequencies of coalition formation in groups of 6–17 male savanna
baboons are found among males ranking directly below the top
two or three (Noë, 1994, p. 212). As discussed in Section 6.4.2, van
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Schaik et al. (2006) have used a polyadic model to broach such
issues, but further development is desirable.

van Schaik et al.’s model is firmly rooted in cooperative game
theory, whereas the models described in Section 5 all largely
belong to non-cooperative game theory. To the extent that these
models focus on coalition structures, however, they are also
rooted in cooperative game theory. We have seen in Section 6
how this perspective has brought coherence to early verbal
theory, and can also serve as a useful point of departure for other
developments. But the more telling point is that effective models
of coalition formation almost inevitably draw at least partly from
both cooperative and non-cooperative game theory, and the
distinction between them may already have outlived its useful-
ness for CAFT, as implicitly recognized by a growing number of
researchers (Cressman et al., 2004; Ray, 2007).

That all models are now hybrids is arguably the central message
of Ray (2007), whose perspective as an economist is a marriage of
both traditions. Interpreting a coalition to mean a set of players
‘‘who are willing signatories to a binding agreement’’ and assuming
agreements to be binding and—once reached—costlessly imple-
mentable, Ray proceeds to model the negotiation process leading up
to such agreements as a non-cooperative game. Interestingly, his
bargaining model tends to generate equal division of spoils within
coalitions, i.e., l-1 in (2), although it also allows for unequal
division when members of the coalition have ‘‘truly different
characteristics or outside options’’ (Ray, 2007, p. 290). In a com-
plementary approach, Ray replaces the characteristic function of
cooperative game theory by a partition function to address the
difficulty that we highlighted in Section 6.4. This strand of Ray’s
theory, although abstract, is largely in the spirit of the ideas that
underpin Section 5.1, in particular Table 2.

Least developed of all in CAFT are models that distinguish
between coalitions and alliances. Neither is able to form unless its
members can at least communicate (Kirman et al., 1986). Beyond
that, it is easy enough to think of coalition and alliance structure
as separate but overlapping networks, with coalitions corre-
sponding to disconnnected cliques in the first, and links continu-
ing to exist in the second network even where they are broken in
the first. How two such networks interact, however, ‘‘is a
complicated theoretical question—it is not even clear what the
appropriate general framework may be’’ (Skyrms, 2009, p. 106). It
is so unclear that Ray (2007, p. 297) has questioned whether an
integrated theory of coalitions and networks ‘‘is possible or even
desirable.’’ It is anyhow a major challenge.

At a much more basic level, even triads are still not well
understood. Consider, for example, a triad whose resource holding
potentials X, Y and Z satisfy X4Y4Z with XoYþZ. What will be
the coalition structure, assuming rank to be correlated with RHP? As
we saw in Section 2, Caplow (1959) predicted either a bridging or an
all-up coalition with equal frequency, but never an all-down
coalition; Gamson (1961) predicted an all-up coalition with cer-
tainty; and Walker (1973) predicted an all-up coalition with prob-
ability 7

12, a bridging coalition with probability 1
3, and an all-down

coalition with probability 1
12. All of these theories are largely verbal

and ignore properties of the RHP distribution, in particular its
variance. But a back-of-the-envelope calculation shows that these
properties make a difference (Section 3), and this result is confirmed
by a variety of analytical models in Section 5. Assuming full
information about RHP, Tan and Wang (2010) identify a pattern of
interaction and specific contest success functions h, defined by (5),
for which an all-up coalition is predicted (Section 5.1). But the result
does not hold if sequential elimination of all but one contestant is
replaced by proportional allocation within the winning coalition, i.e.,
by (2) with l¼ 0; in particular, if r¼2 in (5a), then a bridging or an
all-down coalition is predicted according to whether X24Y2þZ2 or
X2oY2þZ2 (Tan and Wang, 2010, p. 290). Stamatopoulos et al.

(2009), likewise assuming full information about RHP and propor-
tional allocation but using a different pattern of interaction and
contest success function, find that bridging, all-up and all-down
coalitions are all possible, depending on the relative magnitudes of
X, Y and Z (Section 5.1). All of these models assume costs of fighting
to be zero. However, assuming partial information of RHP,
Mesterton-Gibbons and Sherratt (2007) have included costs that
depend on RHP difference, and they show that the probability of an
all-up coalition is higher at higher variance.

These predictions are all based on RHP, thus raising the issue
of its empirical basis. Early CAFT required only ordinal informa-
tion about RHP (Section 2), but more recent theory requires
cardinal measures. Here three remarks are in order. First, some-
times fighting ability is known, or hypothesized, to be equivalent
to a single observable such as body weight or size of weaponry; in
that case, although—for greatest generality—the term RHP is
used in developing theory, any application of that theory adopts
a specific and concrete interpretation of RHP, which accordingly is
directly measurable from relevant empirical data. Second, if the
factor varying among individuals that primarily determines
ability to control a resource is unknown, or if there are several
such factors, then there exist at least four methods for obtaining
(cardinal) estimates of RHP indirectly, from information about the
number and outcomes of antagonistic dyadic interactions. The
earliest method was developed by Boyd and Silk (1983); it builds
on Bradley and Terry (1952), and uses the method of maximum
likelihood. Two more recent approaches are both Bayesian, and
use either Markov chain Monte Carlo simulation (Adams, 2005;
Romero and Castellanos, 2010) or approximate Bayesian compu-
tation (Csilléry et al., 2010) to approximate posterior distribu-
tions. The last of the methods is the non-parametric normalized
David’s score (Bissonnette et al., 2009a).

Third, if multiple factors that vary among individuals deter-
mine ability to control a resource, then in principle it is better to
model these factors separately and explicitly than to aggregate
them into a single measure of RHP by one of the aforementioned
methods. In particular, personality, which appears to be an
important factor in coalition formation (e.g., Perry, 2008), should
be distinguished from size or strength: a bold individual may be
weak, a strong individual may be timid. In practice, however, such
multiple factors are difficult to model; in particular, and despite
increasing attention to animal personality in recent literature
(e.g., McNamara et al., 2009), variation in personality has yet to be
incorporated into game-theoretic models. This is another major
challenge for CAFT.

In the light of all the above, the only truly broad statement one
can currently make about coalition or alliance formation is that it
is highly context-dependent. Indeed high context dependence is
intrinsic to all strategic interaction: any change to any of a game’s
ingredients (Section 4) can be expected to lead to a different
outcome. What this means in practice is twofold. First, the future
of CAFT requires close collaboration between empiricists and
theoreticians. All models are predicated on reward functions
(Section 4.3), and hence on specific assumptions about pattern
of interaction, synergy rules, allocation rules, fighting costs,
victory odds and the distribution of RHP. Even if one initially
adopts an axiomatic approach (Skaperdas, 1996; Münster, 2009),
one ultimately relies on empirical evidence to support the axioms,
e.g., that ‘‘contests among smaller numbers of players are quali-
tatively similar to those among a larger number of players’’
according to the specific rule assumed by Skaperdas (1996,
p. 286), which is controversial (Corchón, 2007, p. 74). Second,
CAFT—like game theory itself—is less a theory than a diverse
collection of analytical and computational tools. By using a
variety of approaches, each with its own advantages and limita-
tions, we expect to achieve a much better understanding of
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underlying processes and resulting patterns than is possible
within a single framework. It is our belief that approaches we
describe in this review have much untapped potential, and can be
significantly developed in the coming years to address the
questions field biologists ask.
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Gächter, S., Herrmann, B., 2006. Human cooperation from an economic perspec-
tive. In: Kappeler, P.M., van Schaik, C.P. (Eds.), Cooperation in Primates and
Humans: Mechanisms and Evolution. Springer, Berlin, pp. 279–301.

Galam, S., 1996. Fragmentation versus stability in bimodal coalitions. Physica A
230, 174–188.

Gamson, W.A., 1961. A theory of coalitions in the triad. American Sociological
Review 21, 489–493.

Garfinkel, M.R., 2004. Stable alliance formation in distributional conflict. European
Journal of Political Economy 20, 829–852.

Gavrilets, S., 2004. Fitness Landscapes and the Origin of Species. Princeton
University Press, Princeton, NJ.

Gavrilets, S., Anderson, D.G., Turchin, P., 2010. Cycling in the complexity of early
societies. Cliodynamics. Journal of Theoretical and Mathematical History 1,
58–80.
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