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Abstract. Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate
that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general
rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple
and general dynamical models that can be studied not only numerically but analytically as well. I review some of the
existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across
adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the
Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly
how the probability of speciation, the average waiting time to speciation, and the average duration of speciation
depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model
postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic archi-
tecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of
the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time
to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which
the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged
from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a
stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very
quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different
populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the
general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks
and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic
environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation
driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci
underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to
gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration
of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by
changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly.
Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric
speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing
disruptive selection and those controlling assortative mating is strong.
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Speciation, that is, the origin of species, is one of the most
intriguing evolutionary processes. Speciation is the process
directly responsible for the diversity of life. Understanding
speciation still remains a major challenge faced by evolu-
tionary biology even now after almost 150 years since the
publication of Darwin’s book, On the Origin of Species. Al-
though the argument on the appropriate way(s) to define a
‘‘species’’ is still unsettled (Wilson 1999), speciation is ul-
timately a consequence of genetic divergence. Here, I will
view the dynamics of speciation as the dynamics of genetic

divergence between different populations (or between parts
of the same population) resulting in substantial reproductive
isolation. A suite of tools for modeling the dynamics of ge-
netic divergence is provided by theoretical population ge-
netics and ecology. These two theories form a foundation for
the quantitative/mathematical study of speciation.

Theoretical population genetics has identified a number of
factors controlling evolutionary dynamics such as mutation,
random genetic drift, recombination, natural and sexual se-
lection, etc. A straight-forward approach for classifying dif-
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FIG. 1. Geographic modes of speciation.

ferent mechanisms and modes of speciation is according to
the type and strength of the factors controlling or driving
genetic divergence. In principle, any of the factors listed
above can be used at any level of classification. However,
traditionally in evolutionary biology the discussions of spe-
ciation mechanisms are framed in terms of a classification in
which the primary division is according to the level of mi-
gration between the diverging (sub)populations (Mayr 1942).
In this classification the three basic (geographic) modes of
speciation are allopatric, parapatric, and sympatric.

Allopatric speciation (from Greek words allos meaning
‘‘other’’ and patra meaning ‘‘fatherland’’ or ‘‘country’’) is
the origin of new species from geographically isolated
(sub)populations. In the allopatric case there is no migration
of individuals (and gene flow) between the diverging
(sub)populations. At the other extreme of the highest possible
migration level lies sympatric speciation (from Greek word
sym meaning ‘‘the same’’). Sympatric speciation is usually
defined as the origin of new species from a single local pop-
ulation (Mayr 1942). This definition (as well as similar def-
initions based on the ‘‘absence of geographic separation,’’
occurrence within a ‘‘cruising range,’’ occurrence within a
‘‘geographic range’’ of ancestor, etc., although intuitively
appealing, is not precise enough for modeling purposes. In-
deed, to use such a definition one would need to additionally
define the exact meaning of ‘‘local population,’’ ‘‘geographic
separation’’ or ‘‘cruising range,’’ etc. I will define sympatric
speciation as the emergence of new species from a population
where mating is random with respect to the place of birth of
the mating partners (for a similar approach, see Kondrashov
and Mina 1986). This definition is actually implied in most
mathematical models of sympatric speciation. The interme-
diate cases when migration between diverging
(sub)populations is neither zero nor maximum possibly fall
within the domain of parapatric speciation (from Greek word
para meaning ‘‘beside’’, ‘‘side-by-side,’’ ‘‘next to’’).

To illustrate this classification of speciation modes, let us
consider a system of two demes that exchange a proportion
m (#1/2) of its members each generation. Assume that mating
follows migration and is random within each deme. Then the
allopatric case corresponds to m 5 0, the sympatric case
corresponds to m51/2, and parapatric case corresponds to
0,m,1/2 (see Figure 1). Both this figure and biological in-
tuition suggest that parapatric speciation is the most general
(geographic) mode of speciation. Endler (1977) made the

same point on the basis of empirical data. I conclude this
discussion with a few comments some of which were made
repeatedly in the past (e.g., Smith 1955, 1969; Endler 1977).
The first is that a consistent use of terminology is very im-
portant. Sometimes the notion of sympatric speciation is used
as an antonym of allopatric speciation, and thus includes both
parapatric speciation and sympatric speciation as defined
above. This lays grounds for confusion. Even more mislead-
ing is the usage of the term ‘‘sympatric speciation’’ as a
synonym of ‘‘the origin of species in a well defined geo-
graphic area.’’ For example, both in the empirical and the-
oretical literature one can easily find statements about ‘‘sym-
patric speciation of Lake Victoria cichlids’’ which are only
a little less misleading than something like ‘‘sympatric spe-
ciation of North American birds.’’ One should also be ab-
solutely clear that the definitions of the geographic modes of
speciation imply nothing about the forces that drive genetic
divergence leading to speciation. Any given evolutionary fac-
tor can play a role within each of the three geographic modes.
For example, sympatric speciation can be driven by mutation
and random drift and allopatric speciation can be driven by
ecological factors. Models describing both these examples
exist. Finally, the traditional stress on the spatial structure
of (sub)populations as the primary factor of classification
rather than, say, on selection reflects both the fact that it is
most easily observed (relative to the difficulties in inferring
the type and/or strength of selection acting in natural pop-
ulations) and the growing realization that spatial structure of
populations is very important. Therefore, I do not find com-
pelling recent suggestions to abandon this classification in
favor of a classification based on types of selection (Via 2001)
or make it subordinate to a ‘‘geography/prezygotic isolating
mechanisms’’ continuum (Kirkpatrick and Ravigné 2002).

Speciation is a very complex process which is affected by
many different factors (genetical, ecological, developmental,
environmental, etc.) interacting in nonlinear ways. Both this
complexity and the difficulties of experimental approaches
coming in particular from the very long time scales that are
typically involved imply that mathematical models have to
play a very important role in speciation research. The ability
of models to provide insights into the speciation process, to
train our intuition, to provide a general framework for study-
ing speciation, and to identify key components in its dynam-
ics are invaluable.

For reasons that are unclear, models of speciation were
slow to appear. Paradoxically, none of the four greats who
are usually viewed as the founders of modern theoretical
population genetics—Fisher, Wright, Haldane, Kimura—ex-
pressed much interest in developing mathematical models
explicitly dealing with speciation. (Among their work most
closely related to speciation are Fisher’s verbal models of
runaway evolution caused by sexual selection [1930],
Wright’s verbal theory of shifting balance [1931, 1982] and
his model of assortative mating [1921], studies of stochastic
peak shifts [Haldane 1931; Kimura 1985; Wright 1941], and
clines [Fisher 1950; Haldane 1948]). To my knowledge, the
first substantial discussions of speciation utilizing formal
mathematical models are those by Maynard Smith (1962,
1966) and Bazykin (1965, 1969). Although these papers have
been very important for setting the field and one of them has
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become a ‘‘citation classic,’’ as far as concrete results are
concerned, they were mostly about modeling the maintenance
of genetic variation rather than about speciation per se. A
part of the 1966 paper by Maynard Smith did treat speciation
directly, but only in a somewhat awkward numerical way for
a single set of parameter values assuming complete repro-
ductive isolation from the start. Systematic studies of spe-
ciation utilizing mathematical models started only in the early
1970s with the pioneering papers of Crosby (1970), Dick-
inson and Antonovics (1973), and Balkau and Feldman
(1973). Crosby (1973) was the first to use an individual-based
model for describing parapatric speciation. Dickinson and
Antonovics (1973) were the first to use numerical iteration
of dynamic equations to explore a wide range of parameter
values for a specific model of parapatric and sympatric spe-
ciation. Balkau and Feldman (1973) were the first to find
conditions for parapatric speciation in a certain model ana-
lytically. For comparison, according to Rice and Hostert’s
(1993) review (the title of which I have adapted for this
paper), the earliest experimental paper on speciation is that
of Koopman published in 1950, and by the early 1970s nine-
teen more experimental papers had been published.

However now the situation has dramatically changed and
the theoretical studies well outnumber the experimental pa-
pers. This imbalance only continues to grow. For example,
recent reviews of experiments on speciation (Florin and
Ödeen 2002; Ödeen and Florin 2000, 2002) list only four
new experimental papers published since Rice and Hostert’s
1993 review, while during the same time interval dozens of
new modeling papers came out. At present there have been
at least a hundred papers modeling some aspects of speciation
(Kirkpatrick and Ravigné 2002). Unfortunately, theoretical
speciation research provides an example where the second
law of dialectics has failed, at least so far. (The second law
of dialectics is concerned with the transformation of quantity
into quality [e.g., Engels 1940, Hegel 1975].) Instead of a
sound mathematical theory of speciation, there is what I can
only interpret as a (justifiable) frustration among both em-
piricists and theoreticians with the theoretical speciation re-
search. For example, Via (2001), an empiricist, who is very
favorable to the idea of sympatric speciation and appears to
be convinced it is very probable from a theoretical point of
view still asks theoreticians (who have already published
dozens of papers on the subject) to ‘‘generalize, by further
theoretical exploration and integration of existing models,
the theoretical conditions under which sympatric speciation
can occur’’ (p. 389). Theoreticians Kirkpatrick and Ravigné
(2002) talk about the ‘‘balkanization’’ of the theory of spe-
ciation and the absence of clear and general results worthy
to be included in the textbooks. Kirkpatrick and Ravigné
devised a scheme for classifying the published models of
speciation in a hope to better understand their results. Turelli
et al. (2001) paint a very gloomy picture of the field of the-
oretical research concluding in particular that because of the
complexity of the process of speciation . . . ‘‘progress on ma-
jor issues . . . is more likely to emerge from empirical than
from mathematical analyses’’ (p. 330).

I believe the current situation stems primarily from the
limitations of the methods used in theoretical speciation re-
search. Most modeling papers on speciation use numerical

simulations as the basic tool. The most general feature of
simulation models is that their results are very specific. In-
terpretation of numerical simulations, the interpolation of
their results for other parameter values, and making gener-
alizations based on simulations are notoriously difficult. For
these reasons the results of simulations are typically wide
open to interpretation and narrowing of interpretation is not
possible without additional work. However, simulation re-
sults are usually impossible to reproduce because many tech-
nical details are not described in original publications. At the
same time, the authors of the original publications (and this
is not limited to theoretical research) almost never return to
their work to check the generality of their conclusions under
more general or reasonable parameter values or assumptions.

What is missing in the theoretical speciation research are
general and transparent analytical results comparable to those
in other areas of theoretical population genetics and ecology.
It is simple mathematical models allowing for analytical in-
vestigation (rather than complex numerical models) that form
the basis of most scientific theories, and there are no reasons
why evolutionary biology, in general, and speciation re-
search, in particular, should be an exception. The questions
that can be answered depend on the tools used in theoretical
research. The majority of existing models of speciation (es-
pecially models of sympatric speciation) mostly demonstrate
that speciation in a certain scenario may occur. What is need-
ed now is a shift in focus to identifying more general rules
and patterns. In principle, to learn that ‘‘selection promotes
speciation’’ or that ‘‘peak shifts by random genetic drift are
unlikely’’ one does not need mathematical models because
this is what biological intuition already tells us. Mathematical
models are needed only if one wants to get much more spe-
cific conclusions and predictions about the effects of genetic
architecture and different types and intensities of selection
on the probability of speciation or peak shift and their dy-
namical characteristics. Such knowledge can be coupled with
the estimates of relevant parameters from natural populations
to get a much deeper understanding of the process. Mathe-
matical models are also needed if intuition is not working
because of the complexity of the process under consideration.

My goal here is to describe and illustrate some existing
theoretical results on speciation that are both simple and gen-
eral. The common wisdom is that a picture is worth a thou-
sand words. In the exact sciences, an equation is worth a
thousand pictures. Equations and their interpretations are the
most concrete results a theoretician can come up with. There-
fore, equations and their interpretations are the focus of this
paper. The extensive body of purely numerical work on spe-
ciation is deemphasized. The equations to be discussed below
are easily accessible to biologists who lack mathematical
training. They represent a kind of a ‘‘do-it-yourself’’ kit
which can be used by biologists to check or train their in-
tuition about speciation by substituting specific numerical
values of parameters and interpreting the results.

In the remainder of this paper, I first will show why the
classical theories of speciation by peak shifts across adaptive
valleys driven by random genetic drift run into troubles (and
into what kind of troubles). Then I will describe the Bateson-
Dobzhansky-Muller (BDM) model of speciation that does not
require overcoming selection. I describe exactly how the
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probability of speciation, the average waiting time to spe-
ciation, and the average duration of speciation depend on the
mutation and migration rates, population size, and selection
for local adaptation. The BDM model postulates a rather
specific genetic architecture of reproductive isolation. I then
show exactly why the genetic architecture required by the
BDM model should be common in general. The theoretical
results to be described here have led to a major shift in focus
from Wright’s ‘‘rugged adaptive landscapes’’ to nearly neu-
tral networks and holey adaptive landscapes. Next I consider
the multilocus generalizations of the BDM model again con-
centrating on the qualitative characteristics of speciation such
as the average waiting time to speciation and the average
duration of speciation. Finally, I consider two models of sym-
patric speciation in which the conditions for sympatric spe-
ciation were found analytically. Results of this type, if known
more widely, can clear up a lot of controversy that currently
surrounds the questions about the plausibility and generality
of sympatric speciation. The Appendix contains a glossary
of symbols used in the paper.

Dynamics of Stochastic Peak Shifts

Here I describe two simple models of stochastic transitions
between adaptive peaks driven by random genetic drift. My
main goal is to show in quantitative terms that strong repro-
ductive isolation is a very unlikely outcome of a stochastic
peak shift.

One-locus two-allele model with underdominance

Following Lande (1979), let us consider a randomly mating
diploid population with discrete and nonoverlapping gener-
ations. Assume that there is a single diallelic locus with al-
leles A and a controlling fitness (viability). Let the relative
fitnesses of genotypes AA and Aa be wAA 5 1, wAa 5 1 2
s and waa, respectively (0 # s # 1) . The adaptive landscape
corresponding to this model has two ‘‘adaptive peaks’’ at
genotypes AA and aa, and an ‘‘adaptive valley’’ at genotype
Aa (see Fig. 2a).

Assume that initially the population is monomorphic for
allele A. Let us allow for mutation from A to a with a small
probability m per gene per generation. Selection will tend to
eliminate alleles a, whereas mutation will continuously sup-
ply them. If the population size N is very large, the population
will stay at a state where allele a is maintained at a very low
frequency m/s. However, if the population size N is small,
the frequency of the mutant allele a will eventually cross 1/2
as a result of random genetic drift and approach 1 resulting
in a ‘‘peak shift.’’ Parameter s, measuring the depth of the
adaptive valley that separates the peaks, also characterizes
the strength of (postmating) reproductive isolation between
the population states before and after the peak shift.

How long does one have to wait until a peak shift occurs
in this model? If the mutation rate is very small and the
product of N and s is at least moderately large (.2) , the
average waiting time until a peak shift occurs can be ap-
proximated as

NsÏp1 e
T ø

m 2 ÏNs

(Lande 1979). This equation shows that T grows exponen-
tially with the product Ns. (Note that although the term

does decrease with increasing Ns, it is dominated by1/ÏNs
the exponential term). For example, if m 5 1025 (which is a
common estimate of the mutation rate, e.g., Futuyma 1998,
Griffiths et al. 1996), s50.05 (which implies a shallow adap-
tive valley) and N5400 (which is a relatively small popu-
lation size), then T 5 1013 generations, which is a very long
time, in fact, far longer than the probable age of any extant
vertebrate species.

Most of this time will be spent waiting for a ‘‘lucky’’
mutant allele destined to be fixed to appear in the population
as the overwhelming majority of mutant alleles are removed
by selection and random genetic drift. One can also estimate
the average time t that it will take for the ‘‘lucky’’ mutant
allele to take over the population. Time t characterizes the
average actual duration of stochastic transitions between the
peaks. Using the diffusion approximation (e.g., Ewens 1979)
one finds that this time is approximately

1 2 Ns
t ø 1 ln .1 2!s s 2

The term ln( ) changes very slowly with the productÏNs/2
Ns. Therefore, the actual duration of transition is on the order
of 1/s generations and, thus, is much shorter than the average
waiting time to transition T. For example, with the same
values of parameters as above, t 5 66 generations. The ratio
of t and T can be viewed as a measure of the likelihood to
observe the actual transition. The above results show that
observing the transition is very unlikely.

Additive quantitative character

Next, let us consider a diploid population of size N where
individuals differ with respect to a single additive quanti-
tative trait z. Assume that the genotypic variance of the trait
is somehow maintained at a constant value G. Let the pop-
ulation be under viability selection defined by a fitness func-
tion

2 2w(z) 5 exp[2s(1 2 z ) ],

where s.0. This fitness function has two local peaks at z 5
21 and z 5 1 separated by a valley at z50 (see Fig. 2b).
The height of the peaks is one, and the fitness at the bottom
of the valley is exp(2s), which is approximately 1 2 s for
small s. That is, parameter s, as before, characterizes the depth
of the adaptive valley separating the adaptive peaks.

Assume that initially the average trait value is in a neigh-
borhood of one of the peaks. Random genetic drift will even-
tually result in the population crossing the adaptive valley
and approaching the other peak (Barton and Charlesworth
1984; Lande 1985). In this model the average waiting time
to the peak shift is approximately

Ï2p
2NsT ø e .

4Gs

Thus, as in the previous model, the waiting time to transition
grows exponentially with Ns. Most of time T will be spent
in a neighborhood of the initial adaptive peak waiting for the
‘‘right’’ sequence of stochastic events for the peak shift to
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FIG. 2. Simple adaptive landscapes with two equal peaks. (a) One-
locus two-allele diploid model with underdominance. (b) Disruptive
selection on an additive quantitative character.

occur. The average actual duration of transition t is approx-
imately

1
t ø ln[8Ï2ÏsN],

4Gs

that is, it has order 1/(Gs). For example, if the genetic var-
iance G 5 0.04 (which implies that the bottom of the valley
is at five standard deviations from the peak), s50.05 and
N5400, then T 5 1.31 3 1020 generations and t 5 490
generations.

There are two important conclusions emerging from these
simple analyses. First, unless the population size is small and
the adaptive valley is shallow, the waiting time to a stochastic
transition between the adaptive peaks is extremely long. This
implies that it is very unlikely that a single peak shift will
result in strong reproductive isolation. Second, if transition
does happen, it is very quick. This implies that observing it
‘‘in action’’ is practically impossible. These conclusions are
very general and apply to a broad class of stochastic tran-
sitions between adaptive peaks (e.g., Barton and Charles-
worth 1984; Barton and Rouhani 1987). Strong reproductive

isolation may follow after a chain of stochastic peak shifts
each of which is across a shallow valley and, thus, results in
a very small degree of reproductive isolation (Walsh 1982).
If there are many adaptive peaks separated by shallow val-
leys, then the pattern of the evolutionary dynamics will be
that of a sequence of rapid transitions between adaptive peaks
separated by very long periods of no apparent change spent
at each of the ‘‘intermediate’’ adaptive peaks. The extended
stays at ‘‘intermediate’’ peaks implies that in this model of
allopatric divergence the pattern of evolutionary dynamics is
quite different from that of ‘‘punctuated equilibrium’’ (Eld-
redge 1971; Eldredge and Gould 1972; Gould 2002) in which
intermediate stages are (almost) never observed. Below we
will see that the pattern of ‘‘punctuated equilibrium’’ arises
in models of parapatric speciation.

The Bateson-Dobzhansky-Muller Model

By the Bateson-Dobzhansky-Muller (BDM) model, I mean
a very specific assumption about the genetic architecture of
reproductive isolation, namely that there are two loci with
two alleles at different loci being ‘‘incompatible’’ (Bateson
1909; Dobzhansky 1937; Muller 1942). The adaptive land-
scapes implied by this model are illustrated in Figure 3. In
this Figure it is alleles a and B that are assumed to be in-
compatible in the sense that individuals carrying both of them
have zero viability (Fig. 3a) or that females carrying allele
a do not mate with males carrying allele B (Fig. 3b). Spe-
ciation occurs if two populations that have initially the same
genetic composition end up at the opposite sides of the ridge
of high fitness values as illustrated in Figure 3. In the BDM
model, the populations are not required to cross any adaptive
valleys as they simply follow a ridge of high fitness values.
For example, hybrid inviability in the fish Xiphophorus be-
haves as if controlled by a simple BDM model (Orr and
Presgraves 2000).

Assume that initially the population has genotype AABB
fixed. Let us allow for mutation from A to a and from B to
b at an equal rate m per generation, and let us neglect the
possibility of backward mutations. In this model the popu-
lation will definitely reach the state with genotype aabb fixed
(see Fig. 3b). This means that speciation is certain. How long
does one have to wait until speciation and what is the actual
duration of the speciation process? Can speciation happen by
mutation and random genetic drift alone? What are the quan-
titative effects of selection for local adaptation on the dy-
namics of speciation? These are the questions I intend to
answer in this section.

Let us define the average waiting time to speciation T as
the average time that it takes to get from the ancestral state
(i.e., with genotype AABB fixed) to the state of reproductive
isolation (i.e., with genotype aabb fixed). Let us define the
average actual duration of speciation t as the average time
that it takes to get from the ancestral state to the state of
reproductive isolation without returning to the ancestral state.
Time t can also be thought of as the average duration of the
intermediate stages in the actual transition to a state of re-
productive isolation (speciation). In a sense, the ratio of t
and T characterizes the probability of observing incipient
speciation. The dynamics of speciation can be modeled as a
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FIG. 3. Adaptive landscapes in the diploid BDM model. The height
of a bar gives the fitness of the corresponding combination of genes.
(a) Fitness of an individual. The presence of alleles a and B results
in zero viability. (b) Fitness of a mating pair. Females carrying
allele a do not mate with males carrying allele B. It is assumed
that alleles at locus B are not expressed in females whereas alleles
at locus A are not expressed in males. The arrows show two possible
routes to the evolution of reproductive isolation.

random walk performed by the most common genotype in
the population along the ridge of high fitness values (Gav-
rilets 2000a). I will describe the corresponding approxima-
tions for T and t separately for allopatric and parapatric cases.

Allopatric speciation

First assume that the two loci under consideration have no
other pleiotropic effects on fitness not related to reproductive

isolation. In this case, speciation will be driven by mutation
and random genetic drift which represents a general null mod-
el of speciation. The average waiting time to speciation and
the average duration of speciation are equal to

2
T 5 t 5 .

m

This last expression is very easy to understand. The average
waiting time until fixation of a neutral allele is approximately
the reciprocal of the mutation rate (Nei 1976). To evolve to
a state with haplotype ab fixed, the population has to fix two
neutral alleles—the fact reflected in the expression for T
above. Note that because in the neutral case the rate of sub-
stitutions does not depend on the population size, the pop-
ulation size N does not enter the above equations for T and
t. Because in this model genetic divergence is irreversible,
the average duration of speciation is equal to the average
waiting time to speciation.

Next we allow for selection for local adaptation. I will
assume that mutant alleles a and b have a small selective
advantage sa over the ancestral alleles A and B in the en-
vironment experienced by the population. In this case the
average waiting time to speciation and the average duration
of speciation are approximately

2 1
T 5 t ø ,

m Sa

where Sa 5 4Nsa (and it is assumed that Sa is at least mod-
erately large, i.e., .3) . The above expression strongly sup-
ports previous arguments (e.g., Schluter 2000) that selection
for local adaptation can dramatically accelerate speciation.
For example, increasing Sa by one order of magnitude will
decrease the waiting time to speciation by one order of mag-
nitude.

Parapatric speciation

In the parapatric case, we assume that each generation a
small proportion m of the population is substituted by im-
migrants coming from a source population. All immigrants
have ancestral genotype AABB.

First assume that speciation is driven by mutation and ran-
dom genetic drift (the null model). Then the waiting time to
speciation is

m 1 m
T 5 2 1 ø ,21 2m m m

while the average duration of speciation is

m
2 1

1 m 1
t 5 ø ,

m mm
1 1

m

where the approximate equalities assume that the rate of mu-
tation is much smaller than the rate of migration (mKm). For
example, if m 5 0.01 and m 5 1025, then Tø108 generations
and tø105 generations. Note that the mutation rate has more
influence on the dynamics of parapatric speciation than the
migration rate.
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Next we consider two models of selection for local ad-
aptation. The first model describes direct selection on the
alleles underlying reproductive isolation. Specifically, let us
assume that mutant alleles a and b have a small selective
advantage sa over the ancestral alleles A and B. Then the
average waiting time to speciation and the average duration
of speciation are

1 m 1
2SaT ø 2 1 e ,1 2m m Sa

m
2Sa2 1 e

1 m 1
t ø ,

m Sm a2Sa1 1 e
m

where it is assumed that the coefficient Sa 5 4Nsa is at least
moderately large (.3) . For example, with the same param-
eters as above and with Sa55, then T 51.73 3 105 generations
and t 5 2.24 3 104 generations. That is, the average waiting
time to speciation is reduced by three orders of magnitude
relative to that in the model with no selection, and this brings
it near a realistic range of values.

The second model considers effects of a genetic barrier to
neutral gene flow. We assume that new alleles a and b have
no effects on adaptation to local conditions but that the pop-
ulation has already diverged from the source population in
some other loci controlling adaptation to local conditions.
Now immigrants will have a reduced fitness, which will affect
the fate of the ancestral alleles A and B that they carry. The
effects of selection ‘‘induced’’ on neutral alleles via their
association with some locally deleterious alleles can be char-
acterized in terms of the gene flow factor (Bengtsson 1985;
Barton and Bengtsson 1986; Gavrilets 1997a; Gavrilets and
Cruzan 1998) defined as the probability that a neutral gene
brought by immigrants makes it to the local genetic back-
ground. For example, assume that immigrating adults differ
from the residents in two genes: a gene reducing the viability
of F1 hybrids to 12s (relative to viability 1 of the residents)
and a neutral gene. Assume also the average number of off-
spring produced by matings between the immigrants and res-
idents, a, and by matings between F1 hybrids and residents,
b, is reduced relative to that of matings among residents
(which is normalized to be 1) . This can happen if there is
fertility and/or sexual selection against immigrants and/or
hybrids. Then the gene flow factor is

r(1 2 s)ab
g 5 ,

1 2 (1 2 r)(1 2 s)b

where r is the rate of recombination between the selected and
neutral loci (Gavrilets and Cruzan 1998). For example, let s
5 a 5 b 5 0.5. Then if r 5 0.5, then g 5 0.07; if r 5 0.05,
then g 5 0.016. That is, joint action of viability selection
and fertility selection and assortative mating can significantly
decrease the effective rate of immigration of neutral alleles
even if they are unlinked to the locus under selection. Re-
turning back to modeling speciation, let us assume that the
gene flow factor resulting from selection for local adaptation
is g. Then approximately

m 1
T ø g , t ø .2m m

These equations show that a strong genetic barrier to the
neutral gene flow (i.e., low g) will significantly decrease the
waiting time to speciation but will not affect its average
duration. For example, if g 5 0.1, the waiting time to spe-
ciation reduces to one tenth of that in the case of divergence
driven by mutation and drift.

There are several conclusions emerging from this analysis.
Unless there is selection for local adaptation, the waiting time
to speciation in the BDM model is very long (but not as long
as under stochastic peak shift). Migration can significantly
delay speciation. It is generally agreed upon that spatial het-
erogeneity in selection is common and that this can have
profound effects of the possibility of speciation even in the
presence of substantial gene flow (Endler 1977; Ogden and
Thorpe 2002; Schneider et al. 1999; Smith et al. 1997). Our
model makes this intuition more precise. Selection for local
adaptation (either acting directly on the loci underlying re-
productive isolation via their pleiotropic effects or acting
indirectly via establishing a genetic barrier to gene flow) can
significantly decrease the waiting time to speciation. Direct
selection is much more effective than indirect selection. In
the parapatric case the average actual duration of speciation
is much shorter than the average waiting time to speciation.

Nearly Neutral Networks and Holey Adaptive Landscapes

We have seen that evolution of strong reproductive iso-
lation via stochastic transitions between isolated adaptive
peaks is unlikely. At the same time, the BDM model shows
that strong reproductive isolation can be achieved if the pop-
ulation evolves along a ridge of high fitness values in the
genotype space. How likely are such ridges in general? My
goal in this section is to answer this question quantitatively.
I will follow the general approach of Gavrilets and Gravner
(1997) and Gavrilets (1997b, 2003).

To get some intuition about this question let us first con-
sider the set of all possible haploid genotypes that have only
two genes each with a very large number of alleles. The
alleles at the first locus will be denoted as Ai and the alleles
at the second locus will be denoted as Bj. Assume a step-
wise mutation pattern (Nei et al. 1983) allowing allele Ai

mutate only to alleles Ai 1 1 and Ai 2 1 and in a similar way,
allowing allele Bi mutate only to alleles Bi 1 1 and Bi 2 1. The
genotype space (i.e., the set of all possible genotypes) in this
model can be represented by a two-dimensional lattice of
square sites where the x- and y- coordinates specify the alleles
at the first and second locus, respectively.

Following Gavrilets and Gravner (1997), assume that ge-
notype fitnesses (viabilities) are generated randomly and in-
dependently and are only equal to one (viable genotype) or
zero (inviable genotype) with probabilities P and 1 2 P, re-
spectively. Here, one might think of the set of all possible
genotypes playing one round of Russian roulette with P being
the probability to get a blank. In this model, any change in
genotype no matter how large or small, results in a fitness
value completely independent of the initial value. Note that
this assumption is, of course, a great oversimplification which
however does not affect our conclusions.
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FIG. 4. Formation of clusters of viable genotypes (painted in black) in two dimensions for different values of the probability of being
viable p. Inviable genotypes are painted in white. (a) P 5 0.15, (b) P 5 0.30, (c) P 5 0.45, (d) P 5 0.60.

Let us paint viable genotypes (sites) in black and inviable
genotypes (sites) in white (see Fig. 4). For each site (geno-
type), its four adjacent sites (directly above, below, on the
left, and on the right) represent other genotypes that can be
obtained by a single mutation. In this model, viable genotypes
tend to form connected networks (or ridges) that populations
can evolve along by fixing single mutations without the need
to go across any inviable states. The number and the structure
of networks depend on the probability P. For small values of
P there are many networks of small size (see Fig. 4a). As P
increases, the size of the largest network increases (see Fig.
4a,b,c). As P exceeds a certain threshold Pc, known as the
‘‘percolation threshold,’’ there emerges the largest network
(known as the ‘‘giant component’’) that extends (‘‘perco-
lates’’) through the whole system and includes a significant

proportion of all viable genotypes (see Fig. 4d). In this model,
describing a so-called ‘‘site percolation’’ on an infinite two-
dimensional lattice, the percolation threshold is Pc 5 0.593
(e.g., Grimmett 1989).

The percolation threshold drops dramatically with more
loci and alleles. For example, if there are L loci each with A
alleles, then the percolation threshold is

1
P 5 .c L (A 2 1)

For example, if L 5 10,000 and A 5 10, then values of P
larger than 1025 will typically result in the existence of an
extensive network of high-fitness ridges expanding through-
out the genotype space. Here, the genotypes that belong to
this network have the same fitness. In this sense, the network
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FIG. 5. Adaptive landscapes. (a) A rugged adaptive landscape
formed by genotypes with fitnesses assigned randomly from a uni-
form distribution. (b) A holey adaptive landscape formed by ge-
notypes with fitnesses within a narrow fitness band. Evolution along
a holey landscape is nearly neutral.

is neutral. In more general situations where a range of var-
iation of fitness values is allowed, the above results can be
generalized to demonstrate the existence of connected nearly
neutral networks in which genotypes have approximately the
same fitness (Gavrilets 1997b, 2003; Gavrilets and Gravner
1997).

Starting with Wright (1932) typical adaptive landscapes
are usually imagined as very rough surfaces with many dif-
ferent peaks and valleys (see Fig. 5a). Continuous evolution
on such ‘‘rugged adaptive landscapes’’ requires crossing
adaptive valleys (as modeled above). The results on neutral

and nearly neutral networks show that Wright’s picture can
be very misleading if adaptive landscapes have a very high
dimensionality because such landscapes are characterized by
the existence of extensive nearly neutral networks. Among
different nearly neutral networks, those with sufficiently high
fitnesses are of particular evolutionary importance because
they allow for continuous evolutionary innovations without
any significant loss in fitness. An important notion describing
such networks is that of ‘‘holey adaptive landscape.’’ A holey
adaptive landscape is defined as an adaptive landscape where
relatively infrequent high-fitness genotypes form a contigu-
ous set that expands throughout the genotype space. An ap-
propriate three-dimensional image of such an adaptive land-
scape that focuses exclusively on the percolating network is
a nearly flat surface with many holes representing genotypes
that do not belong to the network (see Fig. 5b). The smooth-
ness of the surface in this figure reflects close similarity be-
tween the fitnesses of the genotypes forming the correspond-
ing nearly-neutral network. The ‘‘holes’’ include both lower
fitness genotypes (‘‘valleys’’ and ‘‘slopes’’) and very high
fitness genotypes (the ‘‘tips’’ of the adaptive peaks). The
BDM model considered above provides one of the simplest
examples of holey adaptive landscapes. Many more examples
are known (Gavrilets 1997b, 2003; Gavrilets and Gravner
1997).

This section has dealt exclusively with the structure of
adaptive landscapes. A number of mechanisms, such as ran-
dom drift, pleiotropic selection, or random fluctuations in
fitness can drive evolutionary divergence on the landscapes.
The next section considers the first two mechanisms.

Multilocus Generalizations of the BDM Model

The BDM model was formulated in terms of only two loci.
However, existing data on the genetics of reproductive iso-
lation show that typically there are many different loci un-
derlying reproductive isolation even at very early stages of
divergence (Naveira and Masida 1998; Wu 2001; Wu and
Palopoli 1994). If genetic architecture of reproductive iso-
lation is known, the dynamics of speciation can be modeled,
at least in principle. First, however, the genetic architecture
of reproductive isolation is never known completely and,
second, the mathematical treatment becomes extremely com-
plicated as the number of genes involved increases. There-
fore, rather than studying the dynamics of speciation given
a specific genetic architecture, it becomes much more fruitful
to look at the dynamics of speciation expected ‘‘on average.’’
(We have already used a similar approach in our discussion
of the properties of typical adaptive landscapes in the pre-
vious section.) One such approach (Orr 1995; Orr and Orr
1996; Orr and Turelli 2001) reduces the complexity of adap-
tive landscapes underlying reproductive isolation to simpler
effects of genetic ‘‘incompatibilities’’ of certain types that
arise with certain probabilities. In what follows, two (or
more) genes are called incompatible if their joint presence
in an individual’s genotype or in the genotypes of a (poten-
tial) mating pair results in reduction of a fitness component.
The goal of this section is to find the average waiting time
to speciation and the average duration of speciation.
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FIG. 6. The probability of no reproductive isolation with C 5 10.
Different lines correspond to k 5 2 (the shallowest), 4, 6, 8 (the
steepest).

Accumulation of genetic incompatibilities

Let us assume that there is a large number of diallelic loci
potentially affecting reproductive isolation. Let any combi-
nation of k alleles at different loci be incompatible with prob-
ability q. (Note that in the BDM model k52). Consider two
populations that have diverged in d loci. Variable d is a
measure of genetic distance separating the populations. As
shown by Orr (1995), the expected number of incompatibil-
ities between them is

d
J 5 q , (1)1 2k

where 5 d!/[k!(d 2 k)!] is the binomial coefficient (i.e.,
d1 2k

the number of combinations of k objects chosen from a set
of d objects). The value of J increases very rapidly (‘‘snow-
balls’’) with genetic distance d (approximately as the k-th
order of d) . Notice that the snowball effect is much more
pronounced with larger values of k.

How do the incompatibilities translate into reproductive
isolation between the populations? Let us assume that com-
plete reproductive isolation occurs when C incompatibilities
separate the populations. (Note that in the BDM model,
C51). Then the probability that two genotypes at distance d
are not reproductively isolated is approximately

G(C, J )
w(d) 5 (2)

G(C)

(SG, unpubl. data). Here G(·, ·) and G(·) are the incomplete
gamma function and gamma function, respectively (Grad-
shteyn and Ryzhik 1994) and J is given by equation (1). That
the probability w decreases with d is compatible with a gen-
eral empirical pattern that reproductive compatibility de-
creases with genetic distance between parents (Edmands
2002). The probability that two genotypes at distance d are
reproductively isolated is 1 2 w(d). One can also approximate
the average K and the coefficient of variation CVK of the
number of substitutions required for speciation (i.e., complete
reproductive isolation):

1/k
k!

K ø C , (3a)1 2q

1
CV ø (3b)K

kÏC

(S. Gavrilets, unpubl. data). As expected, K increases with
the ratio C/q. The dependence of K on k is nonmonotonic
with K minimized at some intermediate values of k. Figure
6 shows that as genetic divergence exceeds value K, the prob-
ability that no complete reproductive isolation occurs un-
dergoes a rapid transition from 1 to 0. This ‘‘threshold effect’’
is especially strong when many complex incompatibilities
are required for complete reproductive isolation. The latter
feature is also apparent from the fact that the coefficient of
variation CVK quickly goes to zero as both C and k become
large.

It should be intuitively clear that the adaptive landscapes
implied by this model are ‘‘holey.’’ However, in contrast to
the Russian Roulette model described above, here the adap-

tive landscape is ‘‘correlated’’ in the sense that fitnesses of
similar genotypes are similar which is more realistic.

Allopatric speciation

The simplest approach to model allopatric speciation is to
assume that the populations accumulate substitutions at a
constant rate, say v substitutions per generation (Orr 1995;
Orr and Orr 1996; Gavrilets 2000a; Orr and Turelli 2001).
If ‘‘on average’’ K substitutions are required for complete
reproductive isolation between two populations, the average
waiting time to speciation is approximately

K
T 5 (4)

2v

generations, where the coefficient 2 is because there are two
populations accumulating substitutions. Thus, the average
waiting time to allopatric speciation can be predicted on the
basis of K alone without the need to specify the fitness func-
tion w(d) precisely. For example, if reproductive isolation
results from C pairwise incompatibilities (k52) , then equa-
tion (3) predicts that K 5 , leading to the averageÏ2C/q
waiting time to speciation

1 C
T 5 .!v 2q

Orr (1995) and Orr and Turelli (2001) arrived to a similar
expression using a different approach. How can one approx-
imate the rate of substitutions v? One way is to assume that
genes underlying reproductive isolation have no other pleio-
tropic effects on fitness. In this case, genetic divergence will
be driven exclusively by mutation and random drift (the null
model of speciation). Let n be the rate of neutral mutations
per gamete per generation. If the within-population genetic
variation is absent (or very low), each new mutation that is
compatible with the current genetic state can be treated as
selectively neutral. Then the rate of accumulation of substi-
tutions can be written as

v 5 n
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This approach predicts that the average waiting time to spe-
ciation does not depend on the population size either. How-
ever, in general the process of accumulation of incompati-
bilities cannot be treated as neutral even if the relevant genes
do not control any other fitness components. This is because
the alleles producing reproductive isolation are weakly se-
lected against when rare (Nei et al. 1983; Gavrilets et al.
1998; Gavrilets 1999). A more careful analysis of the in-
compatibility model used here shows that large populations
will actually evolve slower than small populations (Nei et al.
1983; Gavrilets et al. 1998, 2000; Gavrilets 1999). If alleles
underlying reproductive isolation also increase fitness in the
local conditions through some pleiotropic effects by a small
amount sa, then

v ø nS ,a

where as before Sa 5 4Nsa. Strong selection for local ad-
aptation will speed up both the genetic divergence and spe-
ciation.

One can also find the variances of these waiting times. If
substitutions accumulate at a constant rate, then the coeffi-
cient of variation CVT of the time to speciation is the same
as the coefficient of variation of the number of substitutions
necessary for complete reproductive isolation (see eq. 3b).
That is,

1
CV ø . (5)T

kÏC

Orr and Turelli (2001) arrived to a similar expression for k
5 2 using a different approach. Interestingly, equations (3a,
4, 5) show that speciation times of the organisms character-
ized by large C are expected to have both larger averages
and narrower relative ranges (Orr and Turelli 2001).

Parapatric speciation

To predict the dynamics of parapatric speciation one needs
to specify function w(d) precisely. A simple choice is the
threshold function of reproductive compatibility

1 for d # K,
w(d) 5 50 for d . K

(Gavrilets et al. 1998; Gavrilets 1999). This function should
be viewed as a limiting case of function w(d) given by equa-
tion (2) when complete reproductive isolation requires many
complex incompatibilities (that is, when k or C are large; see
the brief discussion of the ‘‘threshold effect’’ below eq. 3).
The neutral case (no reproductive isolation) corresponds to
K equal to the number of loci. Some other choices of w(d)
were considered in Gavrilets (1999, 2000b).

Suppose there is a large number of loci and let n be the
probability of mutation per gamete per generation. As before,
we assume that the population is subject to immigration at
a constant rate m and that all immigrants have an ‘‘ancestral’’
genotype. Now speciation can be modeled as a random walk
(Gavrilets 2000a) on the integers 0, 1, 2, . . . performed by
the average pairwise distance d between the immigrants and
the genotype most common in the population. Each new mu-
tation fixed in the population will increase d by one. The
fixation of an ancestral allele brought by the immigrants in

a locus that has already diverged will decrease d by one.
Speciation occurs when genetic distance d reaches the value
of K 1 1.

Neglecting within-population genetic variation, the aver-
age waiting time to speciation is approximately

K
1 m

T ø K! (6)1 2n n

(Gavrilets 2000a). The average duration of speciation is ap-
proximately

1 C(K 1 1) 1 0.577
t ø 1 1 ,[ ]n m /n

where the number 0.577 is Euler’s constant and C(·) is the
psi (digamma) function (Gradshteyn and Ryzhik 1994).
[Function C(K 1 1) slowly increases with K and is equal to
0.42 at K 5 1, to 2.35 at K 5 10, and to 4.61 at K 5 100.]
For example, if m 5 0.01, n 5 0.001 and K 5 5, then the
waiting time to speciation is very long: T 5 1.35 3 1010

generations, but if speciation does happen, its duration is
relatively short: t 5 1236 generations. Figure 7 illustrates
the dependence of T and t on model parameters in more
detail. Notice that t is of the order 1/n across a wide range
of parameter values.

Direct selection for local adaptation. Assume that each
‘‘new’’ allele improves adaptation to the local conditions.
Let sa be the average selective advantage of a new allele over
the corresponding ancestral allele and Sa 5 4Nsa. The waiting
time to speciation is approximately

1
T ø T ,s S exp(KS )a a

where T is given by equation (6). The average duration of
speciation is approximately

1 C(K 1 1) 1 0.577 1
t ø 1 1 exp(S ) .s a[ ]n (m /n) Sa

For example, with the same values of parameters as above
and Sa 5 2, Ts 5 2.74 3 104 generations and ts 5 2170
generations. Thus, selection for local adaptation dramatically
decreases T (in the numerical example, by the factor ø
50,000). Selection for local adaptation also somewhat in-
creases t relative to the case of speciation driven by mutation
and genetic drift.

Effects of a genetic barrier. Assume that alleles under-
lying reproductive isolation have no other pleiotropic effects
on fitness but that the population has already diverged from
the source population in some other loci underlying adap-
tation to local conditions. Let g be the corresponding gene
flow factor resulting from selection for local adaptation. In
this case, the migration rate m has to be replaced by the
effective migration rate me 5 gm. The average waiting time
to speciation can now be approximated as

KT ø Tg ,g

where T is given by equation (6). Even a weak genetic barrier
can significantly decrease the waiting time to speciation if
there are many loci underlying reproductive isolation. For
example, if g 5 0.1 and K 5 5, then Tg reduces by five orders
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FIG. 7. The average waiting time to speciation, T, and the average
duration of speciation, t, in the case of speciation driven by mutation
and random drift. The horizontal axes give the ratio of migration
and mutation rates. In (a), the vertical axis gives the product of T
and the mutation rate n on the logarithmic scale. In (b), the vertical
axis gives the product of t and the mutation rate n on the linear
scale. In (b), the lines correspond to K 5 1,2,4,6,8, and 10 (from
bottom to top). [Using composite variables for the vertical axes
allows one to represent relevant dependencies in two dimensions.]

of magnitude relative to the neutral case. The average du-
ration of speciation is approximately

1 C(K 1 1) 1 0.577 1
t 5 1 1 ,g [ ]n m /n g

and is increased by the presence of the barrier.
It would be very important to know the variances of the

waiting time to speciation and of the duration of speciation.
Unfortunately, no analytical results comparable to expression
(5) are known for the parapatric case.

Most species consist of geographically structured popu-
lations, some of which experience little genetic contact for
long periods of time (Avise 2000). Different mutations are

expected to appear first and increase in frequency in different
populations necessarily resulting in some geographic differ-
entiation even without any variation in local selection re-
gimes. This genetic differentiation by mutation and drift
alone can result in allopatric and parapatric speciation. How-
ever, in the parapatric case the waiting time to speciation is
relatively short only if a very small number of genetic chang-
es is sufficient for complete reproductive isolation. If more
significant genetic change is necessary, then parapatric spe-
ciation without selection for local adaptation is hardly pos-
sible. The results presented above show that even relatively
weak selection (acting directly on the loci underlying repro-
ductive isolation or indirectly via genetic barrier) reduces the
waiting time to speciation by orders of magnitude.

The waiting time to speciation, T, is very sensitive to pa-
rameters: changing a parameter by a small factor can increase
or decrease T by several orders of magnitude. Most of the
parameters of the model (such as the migration rate, intensity
of selection for local adaptation, the population size, and,
probably, the mutation rate) directly depend on the state of
the environment (biotic and abiotic) the population experi-
ences. This suggests that speciation is triggered by changes
in the environment (Eldredge 2003). If it is a significant
environmental change that initiates speciation, the popula-
tions of many different species inhabiting the same geograph-
ic area should all be affected in a similar way. In this case,
one expects more or less synchronized bursts of speciation
in a geographic area, that is, a ‘‘turnover pulse’’ (Vrba 1985).

The results about the duration of speciation t lead to two
important generalizations. The first is that the average du-
ration of parapatric speciation, t, is much smaller than the
average waiting time to speciation, T. This feature of the
models studied here is compatible with the patterns observed
in the fossil record which form the empirical basis of the
theory of punctuated equilibrium (Eldredge 1971; Eldredge
and Gould 1972; Gould 2002). The second generalization
concerns the absolute value of t which is on the order of one
over the mutation rate for a subset of the loci affecting re-
productive isolation for a wide range of migration rates, pop-
ulation sizes, intensities of selection for local adaptation, and
the number of genetic changes required for reproductive iso-
lation. Given a ‘‘typical’’ mutation rate on the order of 1025

2 1026 per locus per generation (Griffiths et al. 1996; Fu-
tuyma 1998) and assuming that there are at least on the order
of 10–100 genes involved in the initial stages of the evolution
of reproductive isolation (Singh 1990; Wu and Palopoli 1994;
Coyne and Orr 1998; Naveira and Masida 1998; Wu 2001),
the duration of speciation is predicted to range between 103

and 105 generations.

Sympatric Speciation

The greatest share of modeling work has been on sympatric
speciation. In spite of this and for the reasons discussed in
the introduction, no clear and simple quantitative results are
generally known. Here I consider two simple models of sym-
patric speciation for which conditions for sympatric speci-
ation can be found analytically.

The first model, developed by Udovic (1980) describes a
diploid population with alleles A and a and the first locus
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and alleles B and b at the second locus. There are two com-
mon indices measuring the progress toward sympatric spe-
ciation in models of this kind. One is the heterozygote defi-
ciency index

y
I 5 1 2

2p(1 2 p)

where y is the frequency of heterozygotes at a locus under
consideration, p and 1 2 p are the frequencies of the two
alleles at the locus. The range of possible values of I is
between 0 and 1. If the population is in Hardy-Weinberg
proportions (which is expected if mating is random), y 5 2pq
and I 5 0. If the population has split into two homozygous
groups that do not mate and hybrids (i.e., heterozygotes) are
completely absent, then y 5 0 and I 5 1. Another index is
the normalized linkage disequilibrium, D9, between the two
loci which is defined as

D
D9 5 .

Ïp p p pA a B b

Here D is the gametic linkage disequilibrium (defined as D
5 xABxaB 2 xAbxaB, where xAB, xab, xAb, and xaB are the fre-
quencies of the corresponding gametes) and pA, pa, pB and
pb are the corresponding allele frequencies. The range of
possible values of D9 is from 21 to 11. If alleles are dis-
tributed randomly between different gametes, then D9 5 0.
If the population has split into two genetic clusters so that
the only gametes present are AB and ab, then D9 5 1. If the
only gametes present in the population are Ab and aB, then
D9 5 21.

In the second model, which deals with sexual conflict,
individuals are haploid, and there are multiple alleles. The
progress toward speciation in this model will be apparent
from the formation of discrete genotypic clusters and from
the degree of reproductive isolation between members of dif-
ferent clusters.

The Udovic model

Udovic’s paper published in 1980 was the only one in
almost a 40-year-long time interval that got very close to
finding conditions for sympatric speciation analytically in a
nontrivial model. However, both his approach and results
were mainly ignored, being overshadowed by other papers
describing numerical simulations. In this section, I describe
and extend Udovic’s ground-breaking results.

Consider a very large population with discrete nonover-
lapping generations. There are two diallelic possibly linked
loci with r being the recombination rate. The first locus with
alleles A and a will be called the assortative mating locus or
the AM locus. The AM locus controls assortative mating
according to the symmetric version of the O’Donald model
(O’Donald 1960). That is, each individual mates with prob-
ability a with another individual that has the same genotype
at the AM-locus. With probability 1 2 a the individual is
engaged in random mating. If a 5 0, the population is ran-
domly mating. If a 5 1, the population is split into three
reproductively isolated genotypic clusters corresponding to
the three genotypes AA, Aa, and aa, of which the cluster of
heterozygotes will gradually disappear. In the O’Donald

model, if there are no other loci, the allele frequencies at the
AM locus do not change whereas the genotype frequencies
approach an equilibrium at which the index of heterozygote
deficiency is

a
I 5 (7)A 2 2 a

(O’Donald 1960) The second locus with alleles B and b will
be called the disruptive selection locus or the DS locus. The
DS locus is subject to symmetric frequency-dependent dis-
ruptive selection favoring rare genotypes. This implies that
if mating is random (that is, if a 5 0), the population evolves
to a stable polymorphic equilibrium where the allele fre-
quencies are pB 5 pb 5 1/2 and the heterozygotes experience
a relative fitness loss which we will denote as S (0 # S #
1). If S 5 1, heterozygotes are inviable and (postmating)
reproductive isolation between the two homozygotes is com-
plete.

In this model there always exists a line of equilibria where
the allele frequency at the AM locus can be arbitrary, the
deficiency of heterozygotes at the AM locus is given by equa-
tion (7), the allele frequencies at the DS locus are at 1/2, the
genotype frequencies at the DS locus are in Hardy-Weinberg
proportions (IB 5 0) , and the linkage disequilibrium between
the loci is absent (D9 5 0). In words, on this line of equilibria
the loci behave as completely independent. Generically, this
line of equilibria is locally stable if disruptive selection and
assortative mating are weak and linkage is loose.

Under certain conditions the line of equilibria becomes
unstable. If this happens, the population evolves to one of
the two alternative polymorphic equilibria at which the fre-
quencies of all four alleles are equal to 1/2, heterozygotes
are in deficiency and there is a statistical association between
the alleles in different loci. The two equilibria differ in the
sign of linkage disequilibrium D9 and which one is ap-
proached by the population depends on initial conditions. At
these equilibria, the population splits into two genetic clusters
which arises within the population sympatrically and the loci
mutually reinforce their effects leading to stronger repro-
ductive isolation between the clusters. Evolution toward such
an equilibrium represents (a step toward) sympatric specia-
tion.

No linkage. If the loci are unlinked (r 5 1/2), sympatric
speciation occurs if

a 1 S . 1. (8)

This condition has a very simple biological interpretation.
Considering each locus in isolation, conditions S 5 1 and a
5 1 imply complete postmating isolation and complete pre-
mating isolation, respectively. Thus, equation (8) tells us that
sympatric speciation occurs only if the cumulative strength
of selection against hybrids and the strength of assortative
mating, S 1 a, is larger than the threshold strength for each
of them to cause complete reproductive isolation when acting
in isolation.

If condition (8) is satisfied, then at equilibrium the index
of heterozygotes deficiency in the DS locus is

S 1 a 2 1
I 5 .B S
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FIG. 8. The Udovic model. (a) Conditions for sympatric speciation. Speciation occurs for parameter values above the corresponding
curve. (b) Isolation index IB for a 5 0.50. The recombination rates are given next to the corresponding curves.

Notice that the condition for sympatric speciation (8) coin-
cides with the condition for IB to be positive.

The index of heterozygote deficiency at the AM locus is
2(S 1 2a)a

I 5 .A 2 2a S 1 a 1 aS 2 S 1 1

The normalized linkage disequilibrium is

ÏI IA B
D9 5 7 .

a

Note that the maximum possible value for each of these three
measures is observed at S 5 1 and is equal to a.

Linkage. With linkage (i.e., if r , 1/2), sympatric spe-
ciation occurs if

2r(1 2 S)(2 2 S)
a . . (9)

S 1 4r(1 2 S)

The equilibrium values of IA, IB and D9 are too cumbersome
to be given here. Figure 8 illustrates the effects of parameters
on the possibility of sympatric speciation and the degree of
resulting genetic differentiation. Close linkage (i.e., small r)
and strong selection are known to both make sympatric spe-
ciation easier and result in stronger genetic differentiation
(Dickinson and Antonovics 1973; Udovic 1980; Felsenstein
1981). The inequality (9) and Figure 8 provide a quantitative
description of these effects. I note that the equation for IA

was given in the appendix of Udovic’s original paper. The
fact that positivity of IB is required for the stability of the
equilibrium is also apparent from the numerical simulations
reported by him.

As an example, let us consider the case of unlinked loci
(r 5 1/2) assuming linear frequency-dependent selection with
fitnesses

W 5 1 1 sp , W 5 1, W 5 1 1 sp ,BB b Bb bb B

where s . 0. This is one of the simplest cases of frequency-
dependent selection (e.g., Gavrilets and Hastings 1995, 1998)
which implies that rare alleles have a fitness advantage over

common alleles. For example, genotypes using an under-
explored resource can get a competitive advantage over other
genotypes. In this model the equilibrium with allele fre-
quencies pB 5 pb 5 1/2 exists and is stable for any s . 0.
At this equilibrium the relative fitness loss of heterozygotes
is S 5 s/(2 1 s) and condition (8) for sympatric speciation
is

2
a . .

2 1 s

For example, if s 5 1 (that is, selection is weak), then a has
to be larger than 0.67 (that is, strong assortativeness in mating
is required) whereas if s 5 8 (that is, selection is strong),
then a has to be larger than 0.20 (that is, weak assortativeness
in mating is sufficient). Alternatively, if a 5 0.2 (that is,
weak assortativeness in mating), then s has to be larger than
8 (that is, strong selection is required) and if a 5 0.67 (strong
assortativeness in mating), then s has to be larger than 1 (i.e.,
weak selection is sufficient). Figure 9 illustrates the distri-
butions of genotype frequencies for three different combi-
nations of parameters obtained by numerical iterations of
dynamic equations.

A somewhat inconspicuous feature of the Udovic model
inherited from the O’Donald model of assortative mating is
that organisms pay no costs for being ‘‘choosy’’ no matter
how rare their preferred mates are. Under this condition the
Udovic model shows that sympatric speciation is possible if
disruptive selection and/or assortativeness in mating are
strong enough. Closer linkage between the AM locus and the
DS locus promote sympatric speciation.

Sexual conflict

In the model considered in the previous section sympatric
speciation resulted as an outcome of disruptive natural se-
lection emerging from ecological interactions between in-
dividuals. In this section I discuss a model where sympatric
speciation is a consequence of sexual selection.

Consider a large sexual haploid population with distinct
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FIG. 9. The distributions of genotype frequencies after 200 generations starting with a random distribution. The loci are unlinked (r 5
1/2) and s 5 2, S 5 0.5. The frequencies of double heterozygotes AB/ab and Ab/aB are pulled together. (a) a 5 0.4 so that condition
(8) is not satisfied and no association of A and B evolves (IA 5 0.25, IB 5 0, D9 5 0). (b) a 5 0.6 so that condition (8) is satisfied but
the association of A and B is weak (IA 5 0.46, IB 5 0.20, D9 5 0.50). (c) a 5 0.8 so that condition (8) is satisfied and the association
of A and B is strong (IA 5 0.72, IB 5 0.60, D9 5 0.82).

nonoverlapping generations. We concentrate on two possibly
linked multiallelic loci assuming step-wise mutation. The al-
leles Ai at the first locus are only expressed in females (or
eggs), and the alleles Bj at the second locus are only expressed
in males (or sperm). The genotype space in this model is
identical to that in the Russian Roulette model considered
above.

I will say that two individuals are ‘‘compatible’’ if mating,
fertilization, and offspring development are not prevented by
isolating mechanisms. Assume that the probability Cij that a
female (or egg) carrying an Ai allele is compatible with a
male (or sperm) carrying a Bj allele is

2(i 2 j )
C 5 exp 2 .i j 2[ ]2s

This choice of function Cij formalizes a general observation
that successful reproduction requires certain ‘‘matching’’ of
male and female genes (Tregenza and Wedell 2000). Spe-
cifically, function Cij is maximized for all pairs of female
and male genes with i 5 j. The coefficient s controls the
tolerance of matching: small s implies that matching has to
be pretty good for successful mating, and large s implies
that even when the value of zi 2 jz is large, mating can happen
easily.

Let Pi be the proportion of the males in the population that
are compatible with females carrying allele Ai. For each fe-
male genotype the value of Pi can be found if one knows the
frequencies of male genotypes in the population. Pi can also
be thought of as a proxy of a female mating rate. We assume
that males can be involved in multiple mating and that they
compete for fertilization opportunities. Although males gen-
erally benefit from high mating rates, in many situations mul-
tiple matings reduce female viability and total fitness, that
is, there is a conflict between the sexes with regard to the
optimum mating rate (Arnqvist and Rowe 1995; Chapman
and Partridge 1996; Rice 1996; Holland and Rice 1998; Park-
er and Partridge 1998). To formalize this fact we assume that
the overall probability that an Ai female leaves offspring is
a unimodal function of Pi that reaches a maximum at a certain
value Popt , 1 (Gavrilets 2000b; Gavrilets et al. 2001; Gav-

rilets and Waxman 2002). For example, in sea urchins, egg
fitness is maximized at a level of sperm density which is
much smaller than levels common under natural conditions
(Franke et al. 2002). In our model, female mating rate is
directly proportional to the proportion of compatible males
and the assumption Popt , 1 formalizes the idea of sexual
conflict over mating rate because for the males, it is optimal
to have Popt 5 1 since then all females are susceptible to
fertilization by any male. To clarify the implications of the
above assumptions, assume that the population is mono-
morphic for male allele Bj. Then Pi 5 Cij and the females
that have the optimum mating rate and the highest overall
fitness are those for which Cij 5 Popt. Using the definition
of C it is easy to see that there are two such female alleles:
Aj1d and Aj2d both at distance d from the male allele, where

22d 5 sÏ ln(P ).opt

This simple model exhibits three general dynamic regimes
(Gavrilets and Waxman 2002). The first regime is an endless
coevolutionary chase between the sexes in which females
continuously evolve to decrease the mating rate while males
continuously evolve to increase it (Holland and Rice 1998;
Gavrilets 2000b; Gavrilets et al. 2001; Gavrilets and Waxman
2002). In this regime, there is a dynamic compromise between
the sexes, and the proportion of compatible pairs is inter-
mediate between Popt and 1. The coevolutionary chase is
generically observed if the level of genetic variation is not
too large.

Here we are concerned with two other regimes observed
when the population size or mutation rates are sufficiently
large. In the Buridan’s Ass regime (Gavrilets and Waxman
2002) there is very low variation in male alleles maintained
by mutation whereas female alleles split into two clusters
both at the optimum distance d from the male allele (see Fig.
10a). In this regime, males get trapped between the two fe-
male subclusters and have relatively low mating success.

In the sympatric speciation regime (Gavrilets and Waxman
2002) males answer the diversification of females by diver-
sifying themselves and splitting into two clusters that start
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FIG. 10. Population genetic states in the sexual conflict model. Parameters: mutation rate m 5 1025, recombination rate r 5 0.5, s2 5
10, and female overall fitness wf 5 exp(2(P 2 Popt)2). (a) The Buridan’s Ass regime (Popt 5 0.6; the average of value of Pi is 0.64;
there is a single male allele B0 and two female alleles A3 and A23); 5000 generations of selection. (b) The sympatric speciation regime
(Popt 5 0.4; the average of values of Pi is 0.42); 8000 generations of selection.

evolving toward the corresponding female clusters. As a re-
sult, the initial population splits into different genetic clusters
(species) that are reproductively isolated and which have
emerged sympatrically (see Fig. 10b). The regime of coevo-
lutionary chase within-species ends after increasing genetic
variation in female alleles leads to the splitting of female
alleles into two subclusters within each species. By contrast,
genetic variation in male alleles remains very low within each
species. At equilibrium, female Pi values are close to Popt

whereas males get trapped between two female subclusters
and have low mating success.

The probability Cij can be written as a function C(d) of
the ‘‘genetic distance’’ d 5 i 2 j between the female and
male alleles. In the limit of very low mutation rates, sympatric
speciation occurs if

C(d 2 1) 1 C(d 1 1) . 2C(d). (10a)

If C is a Gaussian function with zero mean and variance s2,
this inequality can be rewritten as

s , d (10b)

(Gavrilets and Waxman 2002). If the above conditions are not
satisfied, the population stays in the Buridan’s Ass regime.
Sympatric speciation requires small values of Popt implying
that sexual conflict over mating rates must be strong. For ex-
ample, if Popt 5 0.67, then d 5 3 and condition (10a) is not
satisfied (see Fig. 10a). If Popt 5 0.45, then d 5 4 and condition
(10a) is satisfied (see Fig. 10b). Sufficiently small values of
Popt can result in more than two species emerging sympatri-
cally (Gavrilets and Waxman 2002). The above results are not
affected by the recombination rate between the loci.

In this model sympatric speciation requires sufficiently
strong selection (i.e., small Popt) and sufficiently strong as-
sortativeness in mating (i.e., small s). In contrast to the Udov-
ic model, costs of being choosy are explicitly included in the
sexual conflict scenario. That sympatric speciation still oc-
curs is explained by the fact that the loci underlying repro-
ductive isolation also experience direct selection for diver-

sification induced by sexual conflict. In this model selection
does not have to overcome the homogenizing effect of re-
combination that otherwise can prevent sympatric speciation
(Udovic 1980; Felsenstein 1981; Rice 1984).

CONCLUSIONS

The theory of speciation needs many more simple and
general analytical results allowing for transparent biological
interpretation. In spite of the complexity of the processes
leading to speciation, analytical approaches can be successful
as demonstrated above. The major shift in the focus of the-
oretical studies needs to be from the demonstration that spe-
ciation is possible in a specific scenario (which has so far
been the major goal of speciation models) to answering much
more detailed questions about the probability of speciation,
the waiting time to speciation, the duration of speciation, the
degree of genetic and phenotypic divergence between sister
species, the way different resources (including space) are
partitioned between the sister species, etc. Several important
generalizations about speciation have already emerged from
analytical models.

(1) Unless the population size is small and the adaptive
valley is shallow, the waiting time to a stochastic transition
between the adaptive peaks is extremely long. This implies
that it is very unlikely that a single peak shift will result in
strong reproductive isolation. If transition does happen, it is
very quick. This implies that observing it ‘‘in action’’ is
practically impossible.

(2) Most species consist of geographically structured pop-
ulations. Different mutations are expected to appear first and
increase in frequency in different populations necessarily re-
sulting in some geographic differentiation even without any
variation in local selection regimes. Speciation can occur by
mutation and random drift alone with no contribution from
selection as different populations accumulate incompatible
genes. This claim is based on models describing all three geo-
graphic modes (allopatric, parapatric, and sympatric). In the
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same way as divergence by random drift and mutation rep-
resents a null model of molecular evolution, speciation by
random drift and mutation represents a null model of speci-
ation. (Note that Wright himself believed that ‘‘the principal
evolutionary mechanism in the origin of species must . . . be
an essentially nonadaptive one’’ [Wright 1932, p. 364]).

(3) The importance of mutations and drift in speciation is
augmented by the general structure of adaptive landscapes.
Organisms have thousands of genes and millions of nucle-
otides. Although divergence in a small number of genes lead-
ing to strong (or complete) reproductive isolation is possible,
in most cases divergence will include multiple genes. The-
oretical considerations of multidimensional genotype spaces
have led to the realization that their properties are quite dif-
ferent from those of spaces of low dimensionality. In partic-
ular, the multidimensional genotype spaces are characterized
by the existence of nearly neutral networks and holey adap-
tive landscapes. Speciation can be understood as the diver-
gence along these networks (driven by mutation, drift, and
selection for adaptation to a local biotic and/or abiotic en-
vironment) accompanied by the accumulation of reproductive
isolation as a by-product.

(4) The waiting time to speciation driven by mutation and
drift is typically very long. Migration can significantly delay
speciation. However, selection for local adaptation (either
acting directly on the loci underlying reproductive isolation
via their pleiotropic effects or acting indirectly via estab-
lishing a genetic barrier to gene flow) can significantly de-
crease the waiting time to speciation. Direct selection is much
more effective than indirect selection. In the parapatric case
the average actual duration of speciation is much shorter than
the average waiting time to speciation.

(5) Theoretical studies predict extreme sensitivity of the
probability of speciation and the waiting time to speciation on
model parameters which in turn strongly depend on the envi-
ronmental conditions. This suggests that in general speciation
is triggered by changes in the environment. Theoretical studies
also show that once genetic changes underlying speciation start,
they go to completion very rapidly. This is so both for changes
driven by strong selection and for changes driven by weak
stochastic factors. Thus, the quantitative theory predicts the
short duration of intermediate stages in speciation and the dif-
ficulties of observing their traces in the fossil record.

(6) Sympatric speciation is possible if disruptive selection
and/or assortativeness in mating are strong enough. Sympatric
speciation is promoted if costs of being choosy are small (or
absent) and if linkage between the loci controlling assortative
mating and those experiencing disruptive selection is close.

These are but a few initial steps on a long road. A major
future challenge for theoretical speciation research is to de-
velop a comprehensive dynamical theory of speciation and
to link microevolutionary processes with macroevolutionary
patterns observed in the fossil record.
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eds. Population biology ecological and evolutionary viewpoints.
Springer-Verlag, Berlin.

Smith, H. M. 1955. The perspective of species. Turtox News 33:
74–77.

———. 1969. Parapatry: sympatry or allopatry? Systematic Zo-
ology 18:254–255.

Smith, T. B., R. K. Wayne, D. J. Girman, and M. W. Bruford. 1997.
A role for ecotones in generating rainforest biodiversity. Science
276:1855–1857.

Tregenza, T., and N. Wedell. 2000. Genetic compatibility, mate
choice and patterns of parentage. Mol. Ecol. 9:1013–1027.

Turelli, M., N. H. Barton, and J. A. Coyne. 2001. Theory and spe-
ciation. Trends Ecol. Evol. 16:330–343.

Udovic, D. 1980. Frequency-dependent selection, disruptive selec-



2215MODELS OF SPECIATION

APPENDIX
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variables unique to the five major sections of the paper.
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Recombination rate, migration rate, population size, fitness
Different selection coefficients

z, G

g
a, b

P, Pc
L, A

Average and variance of an additive quantitative trait

The gene flow factor
Coefficients characterizing reduction in fertility

Probability of being viable and the threshold value of P
Number of loci and number of alleles

d
k, q
C
J
K, CVK
v
CVT

Number of diverged loci
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Number of incompatibilities necessary for speciation
Expected number of incompatibilities
Average and coefficient of variation of the number of substitutions required for speciation
Rate of substitutions
Coefficient of variation of the time to speciation

I, IA, IB
p, pA, pa, pb, pB
y
D, D9
a
Cij
Pi
Popt
d

Heterozygote deficiency indices
Allele frequencies
Frequency of heterozygotes
Linkage disequilibrium and normalized linkage disequilibrium
Probability of assortative mating
Preference function
Proportion of compatible males maximizing female fitness Ai
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