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Global dispersal reduces local diversity

Alan Hastings'" and Sergey Gavrilets’

'Department of Environmental Science and Policy and Institute of Theoretical Dynamics, University of California, Davis,

CA4 95616, USA

2 Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996, USA

Metapopulation models and stepping-stone models in genetics are based on very different underlying
dispersal structures, yet it can be difficult to distinguish the behaviour of the two kinds of models. We
demonstrate a striking qualitative difference in the equilibrium behaviour possible with these two kinds of
dispersal. If, in a local patch, there are multiple stable equilibria (and consequently an unstable equili-
brium), we demonstrate that, for the spatial system with a metapopulation structure, at equilibrium every
patch has to be near one of the stable equilibria. This contrasts with the clinal structure possible with a
stepping-stone or continuous space model; thus the result can be used to deduce qualitative information
about the form of dispersal from observations of allele frequencies.
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1. INTRODUCTION

A major question facing both ecologists and geneticists is
the interplay between local (in space) dynamics and
dispersal in determining gene frequencies or population
numbers. A range of dispersal structures can be consid-
ered, with exchange only between neighbouring popula-
tions representing one extreme, and equal exchange
among all populations representing the other extreme.
These two extremes can be thought of as idealizations
of two concepts of hybrid zones: the more traditional
concept in which the hybrid zone is a tension zone
(Barton & Hewitt 1985) has only neighbouring popula-
tions exchanging individuals, while in a mosaic hybrid
zone (Harrison 1990) exchanges among a variety of
populations are possible.

Both forms of dispersal have long been used in genetic
and ecological models (Hastings & Harrison 1994). Here
we will consider genetic or ecological systems where in a
single isolated patch there are two stable equilibria. It is
well known that with low dispersal rates, and either form
of dispersal, such bistable dynamics can lead to global
diversity, with different types predominating in different
patches (Harrison 1990; Levin 1974; Karlin & McGregor
1972). We will focus here on the role played by the
structure of dispersal in determining local (within a
subpopulation or patch) diversity in these systems.

Here we will look at systems where, in a single patch,
there is more than one stable equilibrium (and hence
some unstable equilibria as well). Our goal is to demon-
strate that in such systems with equal movement among
all patches, all the stable equilibria for the system as a
whole have all local populations near one of the stable
single patch equilibria. This outcome contrasts to that of a
cline or a tension zone, where there is a smooth transition
of gene frequencies over space. We will make this
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condition more precise below. We also note that, although
the case of equal exchange will never occur in natural
systems, the same result will hold for nearly equal
exchange by continuity arguments. We will discuss how
this result can be used to draw powerful inferences about
the form of dispersal from observations of the distribu-
tions of allele or genotype frequencies or population
numbers. We consider viability selection against hybrids
(see Bazykin 1969; Barton 1979, 1983; Lande 1985; Gavri-
lets 19974). Our approach can also be used for treating
hybrid zones arising from a balance between dispersal
and fertility selection against hybrids and/or premating
reproductive 1isolation (Gavrilets 1997h; Gavrilets &
Cruzan 1998).

Spatial models can be formulated in discrete or contin-
uous space (Hastings & Harrison 1994). Tor the case of
equal exchange it is clear that a discrete space formulation
makes the most sense. Although we do extensively explore
the local exchange model in this paper, we would view the
most reasonable comparison incorporating local move-
ment to be a discrete space formulation with exchange only
between neighbouring demes. This avoids many issues
which would arise in the continuous space model where
boundary conditions would play a major role. In fact, for
continuous space the existence of stable solutions which
exhibit clines requires either a finite habitat and holding
fixed allele frequencies at the boundary, or a region of
restricted migration (Levin 1979).

2. A ONE-VARIABLE MODEL FOR ALLELE
FREQUENCIES

We begin with a simple model describing the dynamics
of a single locus where fixation of either allele is a stable
state. This same model can also be used to describe the
dynamics of a single species with an Allee effect. We
assume that there are n patches, with no underlying
spatial variation in dynamics. (Because our major result
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1s qualitative, it will also hold if there is small spatial
variation in the underlying dynamics) We will first
specify the dynamics at a single location in space, in the
absence of exchange between patches. If we let p; be the
allele frequency in a patch labelled ¢ and s be the strength
of selection, the approximate continuous-time genetic
model for selection at a single locus with underdominance
takes the form (Wright 1969)

S LS I) m
where the parameter ¢ (with 0<c¢<1) determines the
allele frequency at the unstable interior equilibrium. It is
well known that if the patches are arranged in a line,
exchange is only allowed between adjacent patches and
the exchange rate is small enough, there are stable solu-
tions where the allele frequencies in some patches will be
near zero, while the allele frequencies in other patches
will be near unity, and there will be a narrow region (a
hybrid zone) with allele frequencies at intermediate levels
(e.g. Barton 1983).

Our goal is to demonstrate that with the alternative
form of exchange, where all patches are assumed equally
likely to exchange migrants with all other patches, there
are no stable solutions with intermediate allele frequencies
in any patch. We will make quantitative our description of
intermediate allele frequencies below. We begin by
including ‘global’ dispersal in the selection model (1),
obtaining the model

d l -

L= 21— p) (o) +m<§jpj/n—pi), @
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which we rewrite as

B 25,1 = p) (= )+ m(F— ), )

where the mean allele frequency over all patches is

p= Zﬁj- (4)
J=1

3. MODEL ANALYSIS

We begin our analysis by considering the steady states
of this model. With p; the equilibrium in patch i, we have

0=25p(1 =) (fi = ) +m(p— py). ()

We observe that if we view the average allele frequency as
a parameter, this equation is a cubic in ; and hence has
at most three solutions for f,. To show that stable solutions
have no patches at intermediate frequencies, we will show
that at a stable solution no patches are at the intermediate
solution of this cubic equation. Look at an equilibrium
with n; patches at allele frequency «,

n=mn, +ny +ng, (6)
and
O<a<oy<az<l. (7)
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We now show that any such equilibrium will be unstable
if ny > 0.

Stability is determined by the Jacobian matrix for the
system (3), evaluated at equilibrium. We denote the local
(in space) dynamics as

J(p) = 2sp(1 = p)(p —¢). (8)

The form of the Jacobian has n; rows (for i from 1 to 3)
with the diagonal term

gf

5yl (L= L )

p=bi

where f; is one of oy, @y, or as and with all off-diagonal
terms positive. Because the Jacobian matrix has all its off-
diagonal terms positive, by reversing all the signs in
theorem 2.5.3 (Horn & Johnson 1991, p.114) we see that
all principal minors of such a matrix must be negative for
stability (negative eigenvalues). Because every diagonal
term is a principal minor, we conclude that stability
requires

o

o <(l = 1/n)m.

p=by

(10)

If we rearrange this condition as

f 10p] .,
(I=1/n)°
which implies

af
> ol

p=by

m>

(11)

m

(12)

it is easy to see graphically from figure I that it is impos-
sible to have three solutions of the cubic equation (5) and
to satisfy equation (11). Thus we conclude that any equili-
brium to the model with n, >0, with any patches near the
unstable (within a single isolated patch) equilibrium, will
be unstable overall.

Because the key steps in this proof are essentially
graphical, we can extend this to more complex one-locus
(or one-species) models. Additionally, obvious changes in
the argument make it apply to an analogous discrete-time
model for a single locus. However, we have been unable
to extend this result to more than one locus (or species)
analytically. However,
analogous two-locus model demonstrated that the gist of
our result holds—at a stable equilibrium of the model the
system 1s ‘near’ a stable equilibrium in every patch.

numerical solutions of an

4. DISCUSSION

We have shown that a particular kind of equilibrium—
patches at intermediate genotype or allele frequencies—
cannot be the outcome of a particular kind of dispersal.
We can therefore use the contrapositive of this result to
claim that observations of natural populations with
individual subpopulations at intermediate genotype fre-
quencies cannot be a long-term stable outcome unless
migration is restricted or selection varies across space.
There have been a number of studies which have focused
on the dynamics of ‘mosaic’ hybrid zones (e.g. Harrison
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Figure 1. Graphical demonstration that the intermediate
solutions to the equation (5) are impossible. Solutions to
equation (5) can be found by looking graphically for the
intersection of the two curves, 0 = 2sp;(1 — ;) ( p; — ¢) and

0 = m( p; — p). The straight line is drawn to satisfy the
condition (12) for stability of the intermediate solution. The
cubic is drawn for ¢ = 0.4. It is clear from the figure that in this
case the straight line and the cubic cannot cross three times if
the slope of the straight line satisfies the condition (12).

& Rand 1989; Garcia & Davis 1994) for which our results
would suggest a limitation on the kind of migration struc-
ture. Within the region of intermediate allele frequencies
migration must be restricted—long range migration
cannot be the rule.

As an example of this we cite the study of Garcia &
Davis (1994) on a hybrid zone in the grass shrimp
Palaemonetes kadiakensis (Palaemonidae). In this study, the
authors examine the frequencies of alleles at the GPI and
PGM loci, and report a significant number of locations
with intermediate gene frequencies (Garcia & Davis
1994, fig. 1 and Appendix 1). We would thus conclude that
migration must not be too extensive within those regions
where intermediate allele frequencies are present.

Another approach to the problem of relating observa-
tions of allele frequencies to migration patterns would be
to fit a particular model assuming neutrality (e.g. Tufto et
al. 1996). We view neither approach as superior, but
consider the two approaches as complementary. In many
cases the genetic data will not be detailed enough to
allow the fit of a particular migration model, and in
many cases it is useful to be able to draw general conclu-
sions, as our result will allow.

Our main conclusion on the absence of stable poly-
morphic equilibria with 7, >0 (i.e. with any patches at an
intermediate allele frequency) is valid for any relationships
between fitnesses of homozygotes (that is for any value
of ¢). In a special case of equal fitnesses of homozygotes
(that is when ¢=1/2), we can obtain some additional
results. Specifically, it is casy to show that at the symme-
trical equilibrium with n; = n; the allele frequencies are

pi=112F(1/4—m]s).

This symmetrical equilibrium exists if m<s/4 and is
locally stable if m < s5/6. Note that these conditions are
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equivalent to the conditions for the existence and stability
of polymorphic equilibria in a two-deme model (e.g.
Karlin & McGregor 1972). Besides the symmetrical
equilibrium the metapopulation model has other non-
symmetrical equilibria with n; # n, which can be stable.
The symmetrical equilibrium 1s, however, the ‘most
stable’> polymorphic equilibria with n; # n3 are locally
unstable for m = s/6.

From our results we can also draw general conclusions
about the relationships among two-patch models,
stepping-stone models and metapopulation models with
‘global dispersal’. The amount of genetic variation main-
tained in the metapopulation model is, at most, that in a
two-patch stepping-stone model.

In the stepping-stone systems, increasing the number of
demes increases the stability of polymorphism. This stabi-
lity can be characterized in terms of the maximum
migration rate m, still compatible with the maintenance
of variation. (For migration rates higher than m, poly-
morphic equilibria are never stable.) For example, with
just two demes m, = s/6, with four demes it 1s m, = s/5
and with a very large number of demes the polymorphic
solution described by Bazykins cline (Bazykin 1969;
Barton 1979; Gavrilets 19975) 1s neutrally stable. In the
metapopulation model, the critical migration rate is not
higher than in the two-deme system.

In the metapopulation model, there are only two different
values of allele frequencies. In contrast, in a stepping-stone
model there is a sequence of different allele frequencies
(Lande 1985). This means that with global dispersal, allele
frequencies (and the levels of genetic variation within demes)
are more similar than with local dispersal.

The results which we have discussed here in genetic
terms also have analogues in ecology. We essentially show
that the form of diversity maintained depends on the
structure of dispersal.
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