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Abstract.—We propose a simple model for analyzing the effects of microenvironmental variation
in quantitative genetics. Our model assumes that the sensitivity of the phenotype to fluctuations
in microenvironment has a genetic basis and allows for genetic correlation between trait value and
microenvironmental sensitivity. We analyze the effects of short-term stabilizing and directional
selection on the genotypic and microenvironmental components of phenotypic variance. Our model
predicts that stabilizing selection on a quantitative trait increases developmental canalization. We
show that stabilizing selection can result in an increase in the heritability. Our findings may provide
an explanation for the results of selection experiments in which artificial stabilizing selection did
not change the heritability coefficient or increased it.
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The phenotype of an individual depends on
both its genotype and the environment in which
the individual has been developing. When dis-
cussing the sources of phenotypic variability,
typically quantitative geneticists differentiate be-
tween macroenvironment and microenviron-
ment. The former component is shared by many
individuals; examples are climate conditions for
natural populations, and temperature and food
level for laboratory populations. But even in lab-
oratory populations under controlled conditions
individuals with similar genotypes may differ in
quantitative characters in an unpredictable way.
Another example of environmental effects is ran-
dom difference between homological left and right
parts on the same individual (fluctuating asym-
metry). The reasons for such differences are small
fluctuations in external or internal (for the or-
ganism) environment, or both. This source of
variability is not shared by other individuals; it
is unique for each individual or even for each of
the two homological parts of the same individ-
ual. In these cases, one refers to the effects of the
microenvironment or to developmental noise.
We use both terms synonymously here.

Various characteristics of populations related
to the effects of microenvironment and devel-
opmental noise have been intensively analyzed
experimentally. The degree to which microen-
vironmental fluctuations influence the pheno-
type has a heritable basis (for reviews, see Palmer

and Strobeck 1986; Jinks and Pooni 1988, and
references herein). It is sometimes correlated with
other components of phenotype (Cheverud 1988;
Scheiner et al. 1991), and the reaction of a pop-
ulation to the microenvironmental variability can
be changed by selection (Scharloo 1964, 1970;
Scharloo et al. 1967, 1972; Gibson and Bradley
1974; Kaufman et al. 1977). Finally, often there
is a statistically significant association between
individual sensitivity to microenvironmental
variability and protein heterozygosity (for re-
views, see Mitton and Grant 1984; Livshits and
Kobyliansky 1985; Zouros and Foltz 1987). The
role of microenvironmental effects in genetics
and evolution has also been discussed from a
theoretical point of view in the classical literature
(Schmalhausen 1949; Lerner 1954; Waddington
1957) and in recent papers (Bull 1987; Price and
Schluter 1991; Mgller and Pomiankowski 1993).
In spite of this variety of facts and ideas, in most
mathematical models of quantitative traits the
influence of the microenvironment on the phe-
notype z has been described in a simplistic way
using the model:

o))

where g is a contribution of the genotype and e
is arandom microenvironmental deviation whose
distribution is assumed completely independent
of the genotype. The only models we know of
where the distribution of the microenvironmen-

z=g+te
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tal deviation e depends on the genotype are those
in Lewontin (1964) and Zhivotovsky and Gav-
rilets (1992). Lewontin (1964) presented results
of a numerical investigation of a model in which
the environmental variance (the variance of e in
model [1]) decreases with the number of hetero-
zygous loci. This model reflected Lerner’s (1954)
hypothesis of increased developmental homeo-
stasis in multilocus heterozygotes. Zhivotovsky
and Gavrilets (1992, model 4) gave the results
of an analytical investigation of this model. Ad-
ditionally, they (1992, model 3) presented a more
general model in which the microenvironmental
variance was considered as an additive trait plei-
otropically controlled by the same loci that con-
trol the mean value of the trait (i.e., the value of
gin model [1]). All these models postulated spe-
cific dependencies of the microenvironmental
variance on the genotype.

Here, we propose a model that makes no a
priori assumption about dependence of the mi-
croenvironmental variance on the genotype. In-
stead we begin with the standard model of an
additive polygenic trait generalizing it for the
case where the contributions of loci to the trait
depend on the microenvironment in a linear
(simplest) way. From this we derive all other
properties of the system, including the specific
form in which microenvironmental variance de-
pends on the genotype. Our model for an addi-
tive trait can be considered as a modification of
a model that has been used for analyzing the role
of the macroenvironment in the evolution of
quantitative traits under natural and artificial se-
lection (Gavrilets 1986, 1988; Gavrilets and
Scheiner 1993a,b). It is also closely related to
models analyzed by de Jong (1988, 1989, 1990a,b)
and Gimelfarb (1986). These and other earlier
models for genotype-environment interaction
have mainly focused on the effects of the envi-
ronment on mean phenotypic and genotypic val-
ues. We will primarily be interested in the effects
of the environment on the variances and covar-
iances of phenotypic and genotypic values.

In the following section, we formulate a model
of a quantitative trait, describe its static prop-
erties, and compare them with experimental data.
Then we introduce selection into the model and
consider the effects of natural and artificial se-
lection on the properties of multilocus systems
in the presence of developmental noise. The final
section is devoted to the discussion of our ap-
proach and results. We also indicate possible
generalizations of the approach.
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A Model for an Additive Polygenic Trait

We begin with the standard model of an ad-
ditively determined quantitative trait, which we
then modify. We describe the model and our
results in terms of diallelic loci for ease of pre-
sentation, but our results carry over completely
to the case of more alleles per locus. Let an ad-
ditive quantitative trait, z, be controlled by »
diallelic loci, with alleles A,anda; i=1, ...,
n. We introduce the indicator variables /; (/{) equal
to 1 or O if the allele at the ith locus of the paternal
(maternal) gamete is A, or a,, respectively. Let «,
be half the difference between the contributions
of the homozygous loci AA, and a,a,, and 3; be
the contribution of the heterozygous locus Aa;
to the trait. We can represent the trait value as

z=2 B +al,+1'=1D. ()

To introduce the effects of the microenvironment
into the model we first define a new variable, 7,
characterizing the microenvironment, and, sec-
ond, assume that the locus contributions «, and
B, are linear functions of 7.

o, = + &7, (2b)

B, =v, + ur. (2¢)
Here ¢, &, v,, and u, are parameters specific for
the ith locus, with £, and p, describing the effect
of alleles at locus 7 on sensitivity to the micro-
environment. The linearity assumption is equiv-
alent to assuming the microenvironmental ef-
fects are small. Below, we also use an alternative
representation of (2):

3

where g=Z[v, + {(/, + £ — 1)]and vy = Z,[u, +
£+ L= 1)L

We assume 7 is a random variable with mean
u, and variance ¢2. Without loss of generality we
can set p, = 0, possibly by redefining the scale.
Model (2-3) implies that the mean value of the
trait and the microenvironmental variance for
the specific genotype (g, v) are

Eiz|lgv=¢g var{z | g v} = %2 (4

Thus, the value of g determines the mean value
of the trait, while the value of v is a measure of
trait sensitivity to the variation in the micro-
environment. This model could also be viewed
as equivalent to a model of two pleiotropically
determined characters: mean trait value and sen-
sitivity to the microenvironment.

Model (2) assumes a linear dependence of the
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trait value on genotype and microenvironment.
How good is this approximation? For a set of
different genotypes, without considering that the
7 value is unique for each individual, and assum-
ing every genotype in the set experiences the same
values of 7, model (2) implies regression of the
trait value of each genotype on the mean value
over this set of genotypes is linear, with the slope
proportional to g, .. The regression on the mean
model has been intensively applied for the anal-
ysis of the influence of the macroenvironment
on a trait (for a review, see Jinks and Pooni 1988).
Two general results from this analysis are im-
portant for us. First, linear regression is often
sufficient for adequate description of data, es-
pecially if the macroenvironmental variation is
small enough. A linear model would also prob-
ably be expected to be valid for a microenviron-
ment with a smaller variability. Second, the
inheritance of the mean value and the environ-
mental sensitivity (as measured by the slope of
regression) can be adequately described in terms
of additive models in most cases. These results
lead us to believe model (2) may be sufficient, at
least in some cases. In any event, a linear model
is the simplest approximation to a nonlinear one.
In the final section, we describe a straightforward
generalization of the model.

Now we consider a population of individuals
assuming model (3). The mean value of the trait
in the population will be Z = g while the phe-
notypic variance P will be

P=G+ & (5)

Here the genotypic variance G = var{g}} and the
microenvironmental variance € is

€=# + Do’ (6)
where I' = var{y}. All these values can also be
expressed using model (2). Let p; and g, be the
frequencies of alleles A, and a,, respectively. Then
& =2 + & — g)] and G = Z28pg, +
2,,;28$D,, where D, is linkage disequilibrium
between the ith and the jth loci. Mean value ¥
and variance I' are described by the similar for-
mulae.

The outcome of selection depends on the cor-
relation between g and «y (see below). For model
(3), the covariance C between the mean value of
the trait and environmental sensitivity (as mea-
sured by v) is

C = covig v}

=D 2xkpa + 2 2ED, (D)

1#j
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Lerner (1954) postulated that the microenvi-
ronmental variance decreases with increase in
heterozygosity. This view has been a subject of
controversy (see the literature cited above for
references). Chakraborty (1987) analyzed the ap-
parent association between the genotypic vari-
ance and heterozygosity. In particular, he has
shown that if a trait is additive, then the geno-
typic variance is a decreasing function of the
number of heterozygous loci. Under stabilizing
selection, the mean value ¥ converges to zero
(see below). If ¥ = 0, then € is proportional to
T, and the microenvironmental component of
the phenotypic variance can be considered as the
variance of an additive trait. Applying Chakra-
borty’s results for this ‘“trait,” the model pro-
duces a negative association between microen-
vironmental variance £ and heterozygosity,
without assuming any effects of heterozygosity
per se. The additivity assumption is crucial; ap-
parent dependence of the genotypic variance of
a nonadditive trait on heterozygosity can be more
complex, for example, nonmonotonic (Dubrova
and Gavrilets 1989). The same is true if ¥ de-
viates from zero. In this case, the microenviron-
mental variance (see eq. 6) is a sum of two vari-
ables, the first, proportional to 42, increases, while
the second, proportional to I, decreases with het-
erozygosity.

Dynamics of the Means and Variances under
Selection. —1In this section, we consider how se-
lection on a quantitative trait influences the pop-
ulation structure when the trait is described by
model (3). First consider stabilizing selection,
which we describe by a quadratic fitness function

@®)

where z, is the optimum phenotype, and s char-
acterizes the strength of selection. Equation (8)
implies that the optimum phenotype is the same
for all microenvironments. This assumption is
reasonable for describing artificial stabilizing se-
lection experiments. Using (8), the mean fitness
of the genotype (g, v) is

wz) =1 —s(z — z),

fw(z)f(r) dr
=1=sl(g— z)* + %], (9

where f(7) is the distribution of 7a,a and we again
assume (without loss of generality) £{7} = 0. The
last expression shows that quadratic stabilizing
selection on the trait, z, generates separate selec-
tion components on the genotypic value, g, and
on the value, v, characterizing the sensitivity to

w(g, v)
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the variation in microenvironment (cf. de Jong
1989). The resulting fitness function is equiva-
lent to the fitness function arising when stabiliz-
ing selection acts on two pleiotropically con-
nected traits (cf. Tachida and Cockerham 1988;
Hastings and Hom 1989; Wagner 1989; Zhivo-
tovsky and Gavrilets 1992). The optimum value
for the first trait, that is, for g, is z,, whereas for
the second trait, that is, for v, it is 0. This shows
that stabilizing selection on the trait directly in-
fluences both the mean value and the sensitivity
to microenvironmental variation (cf. Wadding-
ton 1957).

We now consider the simplest model of direc-
tional selection on a trait in which the fitness

function is linear:
w(iz) =1+ sz, (10)

where s characterizes the strength of selection.
Obviously, the mean fitness of a genotype (g, v)
is

an
(12)

w(g ) = f WS (@) dr
=1+ sg

This shows that directional selection of the form
(10) directly influences the mean value. If g and
«v are correlated, we also expect to observe a cor-
related response in the sensitivity to microen-
vironmental variation.

We have just shown linear and quadratic se-
lection on the trait (3) can be considered as se-
lection on correlated traits. In the case of a single
trait, the infinitesimal model (Bulmer 1980, chap.
9) seems able to describe accurately the effects
of short-term selection on the dynamics of the
mean and variance. This model assumes exis-
tence of a large number of unlinked loci with
small effects, neglects changes in allele frequen-
cies, and attributes the changes in the additive
genetic variance to the buildup of linkage dis-
equilibrium under selection. Bulmer (1980, egs.
9.15 and 9.16) presented equations relating the
mean and the additive genetic variance of a sin-
gle quantitative trait before selection with the
corresponding values in the following genera-
tion.

Below we describe a multivariate generaliza-
tion of these equations. Later we will use them
for analyzing the effects of linear and quadratic
selection on the trait (3). We now consider m
quantitative traits. Let the distribution of the
genotypic values of these traits in the fth gen-
eration before selection be multivariate normal
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with mean vector g (f) and covariance matrix
G(t). A multivariate version of Bulmer’s equa-
tions can be written as

g(t+ 1) =g + Ag(v),
G(t + 1)=G(1) + 3[Gre — G(t) + AG(V)],

(13a)
(13b)

where Ag(f) and A,G(f) are within-generation
changes (due to selection) in the mean vector and
in the covariance matrix, and G, is the geno-
typic covariance matrix the current allele fre-
quencies would produce if the population were
in linkage equilibrium. There are several ways
to compute the quantities A, g(z) and A,G(¢). With
a simple expression for the mean fitness w(g) of
genotype g (as we used for quadratic stabilizing
and linear directional selection on the trait [3]),
these quantities can be expressed in the form of
covariances of w(g) with functions of the char-
acters,

A,g = Cov[w(g)/w, g], (14a)
AG = Cov[w(g)/w, (g — 8)(g — 8)"]
- Ag)Ag)" (14b)

(Robertson 1966; Price 1970, 1972; Lande and
Arnold 1983). Alternatively, if the phenotypic
distribution is multivariate normal, then these
quantities can be expressed in terms of changes
in the phenotypic distribution. The first is de-
scribed by the well-known equation A,g = G~'PS,
where S is the vector of selection differentials,
and P is the phenotypic covariance matrix (Lande
1979), while the second can be represented as

AG =GP 'APP'G (15)

(Lande and Arnold 1983). The observed change
in the phenotypic covariance matrix produced
by selection within a generation AP can be ex-
pressed by (14b) with substitution of z for g, w(z)
for w(g), and S for A,g (Lande and Arnold 1983).
Equations (13-15) represent a multitrait version
of Bulmer’s (1980) infinitesimal model; they are
valid for arbitrary fitness functions. For the spe-
cific case of a Gaussian fitness-function equation,
(13b) was presented in (Turelli 1988). As was
stated above, Bulmer’s model assumes that the
loci are unlinked. In this model, the covariance
matrix G(¢) quickly converges to an equilibrium
value. Another extreme case is a model with
complete linkage. In this model, the change be-
tween generations, G(¢ + 1) — G(?), is exactly
the change within a generation, A,G(¢), and the
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elements of the covariance matrix G(z) quickly
converge to zero.

Quadratic Stabilizing Selection.—We now ex-
amine stabilizing selection (8) acting on the trait
(2). Assume that the distribution p(g, ) of g and
v values in the population is approximately bi-
variate normal. For fitnesses to remain positive,
we also have to assume that the parameter s is
small. The equations for the changes in the means
are

sg--2@Gz+on, a6

MF=-Z@Ez+Te, a6y
where w =1 — s(g2 + G + ¢). For simplicity, we
have assumed that z, = 0, and ¢2 = 1. In this
case, equation (13a) can be written in the form
[g¢ + 1), ¥ ¢ + DI" = A@®Ig(1); ¥(®]". The
eigenvalues of A(¢) are positive. Moreover, pro-
vided there is genetic variation for both g and v,
and excluding a biologically unrealistic case of
perfect correlation between g and v, these eigen-
values are less than one. This shows the mean
values converge to the optimum values (zero for
both g and ). The equations for the changes in
the variances G and € and in the covariance C
are then

AG = —2—;(G2 + C?), (17a)
2s

AL = —E(E2 + C?), (17b)

AC = —%cp, (170)

where for simplicity we have assumed that the
mean values g and ¥ have already reached zero.
The fact that both A,G and A€ are negative, to-
gether with (13b), shows that stabilizing selection
tends to reduce both components of phenotypic
variance P (i.e., both G and &) This has been
demonstrated experimentally (see the references
above). Our model predicts that stabilizing se-
lection also reduces the absolute value of co-
variance C. The rate of change of G, €, and C
decreases with decrease in the absolute value of
C. A greater component of phenotypic variance
experiences a greater rate of reduction. This can
result in increase in the heritability coeflicient /42
= G/(G + &) under stabilizing selection. For ex-
ample, if the population is initially at linkage
equilibrium with G = 0.25, £ =0.75 (and, hence,

S. GAVRILETS AND A. HASTINGS

h?=0.25), C =0, and s = 0.25, then in the next
generation G = 0.23, € = 0.56, but #2 = 0.29 >
0.25. Figure 1A illustrates these effects of one
generation of stabilizing selection for nonzero
covariance between g and vy. Absence of signif-
icant changes or even an increase in the herita-
bility has sometimes been observed in stabilizing
selection experiments (Gibson and Thoday 1963;
Gibson and Bradley 1974; Kaufman et al. 1977).
Classical models, which consider the microen-
vironmental deviation completely independent
of the genotype, predict an invariable reduction
in A2

Maintenance of Genetic Variability under Sta-
bilizing Selection. — The normal approximation,
which was used in the preceding section, cannot
be applied for analyzing long-term stabilizing se-
lection. For this case, a more detailed approach
is needed. The fitness of a genotype (g, 7v) is
equivalent to the fitness function that describes
stabilizing selection acting on two pleiotropically
related traits (see expression [9]), allowing the
use of results already known for selection on mul-
tiple traits. Here we discuss results on the main-
tenance of polygenic variability without muta-
tion. Hastings and Hom (1990) have shown that
if stabilizing selection is weak relative to recom-
bination, then the number of polymorphic loci
at equilibrium cannot be greater than the number
of traits. In model (3), the number of traits is
two; thus, no more than two loci can be main-
tained as polymorphic under weak selection.
However, if selection is strong enough relative
to the overall recombination rate or to the re-
combination rate within some subsets of loci,
then polymorphism can be maintained in many
loci (Gimelfarb 1992; Gavrilets and Hastings
1993, 1994). This conclusion applies directly to
model (3).

Linear Directional Selection. —Finally, we ex-
amine directional selection (10). Again we as-
sume the distribution p(g, v) of g and v values
in the population is approximately bivariate nor-
mal and the parameter, s, is small. In this case,

Az = sG/w, (18a)
Ay = sC/w, (18b)
where w = 1 + sg, and
AG = —(A8)? = —s52G*/w?, (19a)
AL = 2s4C/w, (19b)
AC = —(AB)AY) = —s2CG/w?. (19¢)
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Expressions (18a, 19a) describe the direct effects
of selection on g, while those in (18b, 19b) de-
scribe the correlated selection on y. The model
predicts that directional selection slowly decreas-
es the genotypic variance, G, and the absolute
value of covariance C. The effects of selection
on the microenvironmental variance can be more
pronounced, depend on the sign of C, and vanish
as C or ¥ reaches zero. Figure 1B illustrates the
one-generational effects of directional selection
on both components of phenotypic variance and
the heritability coefficient.

DiscussioN

Here we have proposed a new model for an-
alyzing the effects of microenvironmental vari-
ation in quantitative genetics. This model as-
sumes that the loci contribute additively to the
trait value, and that the locus contributions are
linear functions of some unobserved random mi-
croenvironmental variable. In spite of the sim-
plicity of the model, it incorporates and is able
to describe many properties of natural and ex-
perimental populations. In particular, the model
assumes that microenvironmental sensitivity has
a genetic basis, allows for a genetic correlation
between the trait value and the microenviron-
mental sensitivity, and produces a negative re-
lationship between microenvironmental vari-
ability and heterozygosity. All these properties
have been repeatedly observed in experiments
(see the references above), but are almost ne-
glected in existing quantitative-genetic models.
Using this model, we also analyzed the effects of
short-term stabilizing and directional selection
on the genotypic and the microenvironmental
components of phenotypic variance and on the
heritability coefficient. We have shown stabiliz-
ing selection tends to reduce both these com-
ponents. This has been observed in selection ex-
periments. A component with a larger value
experiences a bigger reduction, which can result
in an increase in the heritability coefficient under
stabilizing selection. Our findings may provide
an explanation for the results of selection exper-
iments in which artificial stabilizing selection did
not change, or even increased, the heritability
coefficient (Gibson and Thoday 1963; Gibson
and Bradley 1974; Kaufman et al. 1977). Stan-
dard quantitative-genetic models always imply
a decrease in heritability under stabilizing selec-
tion. Our model also predicts that the reduction
in the components of phenotypic variability in-
creases with increasing covariance C between trait
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FiG. 1. Genotypic variance, G, microenvironmental
variance, ¢, and the heritability, 4> after one generation
of selection as functions of the correlation between g
and fl. Before selection the population is at linkage
equilibrium with G = 0.25, € = 0.75, k2 = 0.25. (A)
stabilizing selection (8) with s = 0.25; (B) directional
selection (10) with s = 0.25.

value and microenvironmental sensitivity, and
that stabilizing selection tends to reduce this co-
variance. The latter prediction is also true for the
directional selection which we modeled by a lin-
ear fitness function. However, the effect of di-
rectional selection on the microenvironmental
variance € depends on the sign of C—if it is
positive, we expect to observe an increase in £.

We have shown that the model considered here
can produce a negative apparent association be-
tween microenvironmental variance, £, and het-
erozygosity. An observed negative association
between € and heterozygosity is a core element
of Lerner’s theory of genetical homeostasis. Ler-
ner (1954) postulated that multilocus heterozy-
gotes have lower environmental variance be-
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cause of better buffering against variations in the
environment. In contrast, we have derived this
negative association without any assumptions
about the effects of heterozygosity per se. In our
model, this is just an outcome of the assumptions
that the parameter v measuring the sensitivity
to the microenvironmental variation is deter-
mined additively, and its mean value in the pop-
ulation is about zero. More complex models of
genetic determination of microenvironmental
sensitivity and deviation of ¥ from zero would
result in other dependencies, including nonmon-
otonic ones. Our model’s prediction that stabi-
lizing selection on a quantitative trait reduces
the sensitivity to fluctuations in the microenvi-
ronment is closely related to Waddington’s (1957)
ideas about developmental canalization. Wad-
dington emphasized the role of special regulatory
genes underlying this effect. Our phenomenolog-
ical model does not incorporate such genes, but
nevertheless is able to reproduce the effect. Our
model could be modified, however, by having
some genes which only affect the trait, and some
which only affect the sensitivity to the micro-
environment.

The basic model analyzed here was construct-
ed, as we have described above, by taking the
standard model of an additive quantitative trait
(2) and assuming the locus contributions are lin-
ear functions of some unobserved variable that
describes the state of the microenvironment (cf.
de Jong 1988, 1989, 1990a,b). While the as-
sumption of linearity seems justified (the fluc-
tuations in the microenvironment are supposed
to be small, and the linear approximation is ex-
pected to be valid), the assumption that a single
microenvironmental variable exists may be too
restrictive. The following argument shows how
a more general model could be constructed. Let
us consider a model that states that the character

z=F(@G 9O,
(20)

where G and € are vectors of variables that de-
scribe internal and external environments. The
former is usually referred to in quantitative ge-
netics as genotype, while the latter is tempera-
ture, food level, etc. Let us consider a trait value
for a specific genotype in a specific fixed external
macroenvironment. A natural way to model mi-
crofluctuations in the external environment is to
assume that the components of ¢ are random
variables distributed around some (macroenvi-
ronmental) values €, ,,,.,. Microfluctuations in
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the internal environment result in the specific
genotype acting as if it were a slightly different
genotype. To model this, we can assume that the
components of G are random variables distrib-
uted around “real” genotypic values G, ,,..cr0- As-
suming all these deviations are small, we can
approximate F by a linear function that results
in the model z = g + e. Here g = F(G
and

macro> Emacra)

e = 2 'Yl'.im‘ri,inl + 2 ‘Yj.extTj,exn (21)
where 7;,,, = G, = G, macro» ADA 7, ., = & — €, 0o
account for the fluctuations in the internal and
external microenvironment and can be consid-
ered random variables, while v4’s are fixed coef-
ficients (that depend on the internal and external
macroenvironment). Model (3) assumes the ran-
dom variable e can be approximated as e = 7,
where v depends on the macroenvironment, and
7 accounts for fluctuations in microenvironment
(cf. Gimelfarb 1986). A more general model
would have the form

Z=g+27171a

where g and v; depend on the macroenvironment
and 7, are independent random variables that
specify the microenvironmental effects. Formal-
ly, the components of v can be interpreted as
quantitative traits, which are genetically corre-
lated, and the properties of the system under
consideration can be analyzed using the existing
theory of multivariate quantitative genetics
(Lande 1979; Tachida and Cockerham 1988;
Wagner 1989; Hastings and Hom 1989; Zhivo-
tovsky and Gavrilets 1992). For example, qua-
dratic stabilizing selection (8) will make the mean
fitness of genotype (g, vi, V2 - - -)

(22)

W(g: Yis> Y25 - - ~)

=1- s((g — z5)? + 2 'y,?var{-r,}).

This fitness function is equivalent to a fitness
function acting on a set of quantitative traits.
Standard approaches for analyzing models of this
kind exist (Hastings and Hom 1989; Zhivotov-
sky and Gavrilets 1992).

Here, we have applied a framework (Gavrilets
1986, 1988; Gimelfarb 1986; de Jong 1988, 1989,
1990a,b; Gavrilets and Scheiner 1993a,b), which
has been developed for analyzing the effects of
macroenvironment, to the problems related to
microenvironment. In principle, the existing al-
ternative approaches could be used (see the re-
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view by Scheiner 1993). The infinite dimensional
version (Gomulkiewicz and Kirkpatrick 1992)
of the approach that treats quantitative traits in
different (macro) environments as separate traits
(Falconer 1952; Via and Lande 1985, 1987) could
be used to answer questions about dynamics of
the phenotypic moments under selection. How-
ever, using this approach we could not consider
relationships between phenotypic characteristics
and heterozygosity or demonstrate the mainte-
nance of genetic variability without mutation.
Another alternative is a model developed by Gil-
lespie and Turelli (1989). This model, however,
has some shortcomings (Gimelfarb 1990) and
does not provide a simple way for predicting the
effects of selection on phenotypic moments.

The approach described here can be general-
ized in several directions. One way is to consider
the exact dynamic equations without using the
assumption about bivariate normality. Domi-
nance and epistatic effects can be included in the
model. Other more complex selection regimes
can also be considered, including truncation se-
lection, which is usually used in artificial selec-
tion experiments, and Gaussian stabilizing se-
lection. If the fitness function is Gaussian (i.e.,
w(z) = Exp[—2z%/(2V})], and the 7 value in model
(3) has a normal distribution, then the mean fit-
ness of genotype (g, v) is given by

g2
v W = B { 2, + 7203)}'

Such a fitness function has been proposed for
analyzing the evolution of environmental toler-
ance (Lynch and Gabriel 1987; Gabriel and Lynch
1992). A more detailed analysis of the relation-
ships between the microenvironmental variance
and heterozygosity can also be completed. Gav-
rilets and de Jong (1993 unpubl. data) have de-
rived formulae that can be used to compute the
mean fitness of the population, W, conditioned
on heterozygosity, H, and covariance of w, and
H. As soon as a genetic model of the microen-
vironmental sensitivity is specified, these for-
mulae for analyzing the relation between e and
H can be directly applied. Another interesting
application would be a generalization of the ap-
proach for the case of multiple traits and analysis
of the relationships between genotypic and phe-
notypic covariance matrices (Cheverud 1988).

ACKNOWLEDGMENTS

We thank S. Scheiner, B. Walsh, and reviewers
for helpful comments on the manuscript. This

1485

work was supported by Public Health Service
grant RO1 GM 32130 to A.H.

LITERATURE CITED

Bull, J. J. 1987. Evolution of phenotypic variance.
Evolution 41 303-315.

Bulmer, M. G. 1980. The mathematical theory of
quantitative genetics. Clarendon Press, Oxford.
Chakraborty R. 1987. Biochemical heterozygosity and
phenotypic variability of polygenic traits. Heredity

59:19-28.

Cheverud, J. M. 1988. A comparison of genetic and
phenotypic correlations. Evolution 42:958-968.
de Jong, G. 1988. Consequences of a model of coun-
ter-gradient selection. Pp. 264-277 in G. de Jong,
ed. Population genetics and evolution. Springer,

Berlin.

1989. Phenotypically plastic characters in

isolated populations. Pp. 3-18 in A. Fontdevila, ed.

Evolutionary biology of transient unstable popu-

lations. Springer, Heidelberg.

1990a. Genotype-by-environment interac-

tion and the genetic covariance between environ-

ments: multilocus genetics. Genetica 81:171-177.

1990b. Quantitative genetics of reaction
norms. Journal of Evolutionary Biology 3:447—468.

Dubrova, Yu, and S. Gavrilets. 1989. Epistatic gene
interaction in offspring of distant marriages con-
tacted within the Russian population (in Russian).
Doklady Biological Sciences 309:726-729.

Falconer, D. S. 1952. The problem of environment
and selction. American Naturalist 86:293-298.

Gabriel, W., and M. Lynch. 1992. The selective ad-
vantage of reaction norms for environmental tol-
erance. Journal of Evolutionary Biology 5:41-59.

Gavrilets,S. 1986. An approach to modeling the evo-
lution of populations with consideration of geno-
type-environment interaction (in Russian). Soviet
Genetics 22:28-36.

. 1988. Evolution of modificational variability
in random environment [in Russian, English sum-
mary]. Journal of General Biology (USSR) 49:271-
276.

Gavrilets, S., and G. de Jong. 1993. Pleiotropic mod-
els of polygenic variation, stabilizing selection and
epistasis. Genetics 134:609-625.

Gavrilets, S., and A. Hastings. 1993. Maintenance of
genetic variability under strong stabilizing selec-
tion: a two-locus model. Genetics 134:377-386.

1994. Maintenance of multilocus variability
under strong stabilizing selection. Journal of Math-
ematical Biology 32:287-302.

Gavrilets, S., and S. Scheiner. 1993a. The genetics of
phenotypic plasticity. V. Evolution of reaction norm
shape. Journal of Evolutionary Biology 6:31-48.

. 1993b. The genetics of phenotypic plasticity.
VI. Theoretical predictions for directional selec-
tion. Journal of Evolutionary Biology 6:49-68.

Gibson J. B, and J. M. Thoday 1963. Effects of dis-
ruptive selection. VIII. Imposed quasi-random
mating. Heredity 18:513-524.

Gibson J. B, and B. P. Bradley. 1974. Stabilizing
selection in constant and fluctuating environments.
Heredity 33:293-302

Gillespie, J. H., and M. Turelli.

1989. Genotype~



1486

environment interaction and the maintenance of
polygenic variability. Genetics 121:129-138.

Gimelfarb, A. 1986. Multiplicative genotype—envi-
ronment interaction as a cause of reversed response
to directional selection. Genetics 114:333-343.

1990. How much variation can be main-

tained by genotype-environment interaction? Ge-

netics 124:443-445.

1992. Pleiotropy and multilocus polymor-
phism. Genetics 130:223-227.

Gomulkiewicz R., and M. Kirkpatrick. 1992. Quan-
titative genetics and the evolution of reaction norms.
Evolution 46:390—411.

Hastings, A., and C. Hom. 1989. Pleiotropic stabi-
lizing selection limits the number of polymorphic
loci to at most the number of characters. Genetics
122:459-463.

1990. Multiple equilibria and maintenance
of additive genetic variance in a model of pleiot-
ropy. Evolution 44:1153-1163.

Jinks, J. L., and H. S. Pooni. 1988. The genetic basis
of environmental sensitivity. Pp. 505-522 in B. S.
Weir, E. J. Eisen, M. M. Goodman, and G.
Namkoong, eds. Proceedings of the second inter-
national conference on quantitative genetics. Sin-
auer, Sunderland, Mass.

Kaufman, P. F., F. D. Enfield, and R. E. Comstock.
1977. Stabilizing selection for pupa weight in Tri-
bolium castaneum. Genetics 87:327-341.

Lande, R. 1979. Quantitative genetic analysis of mul-
tivariate evolution, applied to brain: body size al-
lometry. Evolution 33:402-416.

Lande, R.,and S.J. Arnold. 1983. The measurement
of selection on correlated characters. Evolution 37:
1210-1226.

Lerner, I. M. 1954. Genetic homeostasis. Oliver and
Boyd, Edinburgh.

Lewontin, R. C, 1964. The interaction of selection
and linkage. II. Optimal model. Genetics 50:757-
782.

Livshits G., and E. Kobyliansky. 1985. Lerner’s con-
cept of developmental homeostasis and the prob-
lem of heterozygosity level in natural populations.
Heredity 55:341-353.

Lynch M., and W. Gabriel. 1987. Environmental tol-
erance. American Naturalist 129:283-303.

Mitton J. B, and M. C. Grant. 1984. Associations
among protein heterozygosity, growth rate and de-
velopmental homeostasis. Annual Review of Ecol-
ogy and Systematics 15:479—499.

Moiller, A. P, and A. Pomiankowski. 1993. Punc-
tuated equilibria or gradual evolution: fluctuating
asymmetry and variation in the rate of evolution.
Journal of Theoretical Biology 161:359-367.

Palmer A. R,, and C. Strobeck. 1986. Fluctuating
asymmetry: measurement, analysis, patterns. An-
nual Review of Ecology and Systematics 17:391-
421.

Price, G. R. 1970. Selection and covariance. Nature
227:520-521.

S. GAVRILETS AND A. HASTINGS

1972. Extension of covariance selection
mathematics. Annals of Human Genetics 35:485-
90.

Price, T., and D. Schluter. 1991. On the low heri-
tability of life-history traits. Evolution 45:853-861.

Robertson, A. 1966. A mathematical model of the
culling process in dairy cattle. Animal Production
8:95-108.

Scharloo W. 1964. The effect of disruptive and sta-
bilizing selection on the expression of a cubitus in-
terruptus mutant in Drosophila. Genetics 50:553—
562

. 1970. Stabilizing and disruptive selection on
a mutant character in Drosophila melanogaster. 111.
Polymorphism caused by a developmental switch
mechanism. Genetics 65:693-705.

Scharloo W., M. S. Hoogmoed, and A. Ter Kuile. 1967.
Stabilizing and disruptive selection on a mutant
character in Drosophila. 1. The phenotypic variance
and its components. Genetics 56:709-726.

Scharloo W., A. Zweep, K. A. Schuitema, and J. C.
Wijnstra. 1972. Stabilizing and disruptive selec-
tion on a mutant character in Drosophila melano-
gaster. IV. Selection on sensitivity to temperature.
Genetics 71:551-566.

Scheiner S. 1993. Genetics and evolution of pheno-
typic plasticity. Annual Review of Ecology and Sys-
tematics 24:35-68.

Scheiner S. M., R. L. Caplan, and R. F. Lyman. 1991.
The genetics of phenotypic plasticity. III. Plastici-
ties and fluctuating asymmetries. Journal of Evo-
lutionary Biology 4:51-68.

Schmalhausen, I. I. 1949. Factors of evolution. Blak-
iston, Philadelphia.

Tachida, H., and C. C. Cockerham. 1988. Variance
components of fitness under stabilizing selection.
Genetical Research. 5147-53.

Turelli, M. 1988. Phenotypic evolution, constant co-
variances, and the maintenance of additive vari-
ance. Evolution 42:1342-1347.

Via, S., and R. Lande. 1985. Genotype—environment
interaction and the evolution of phenotypic plas-
ticity. Evolution 39:505-522.

1987. Evolution of genetic variability is a
spatially heterogeneous environment: effects of ge-
notype—-environment interaction. Genetical Re-
search. 49:147-156.

Waddington C. H. 1957. The strategy of genes. Allen
and Unwin, London.

Wagner, G. P. 1989. Multivariate mutation—selection
balance with constrained pleiotropic effects. Ge-
netics 122:223-234.

Zhivotovsky, L.,and S. Gavrilets. 1992. Quantitative
variability and multilocus polymorphism under ep-
istatic selection. Theoretical Population Biology 42:
254-283.

Zouros E., and D. W. Foltz. 1987. The use of allelic
isozyme variation for the study of heterosis. Iso-
zymes 13:1-59.

Corresponding Editor: J. B. Walsh




