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Percolation on the Fitness Hypercube and the Evolution of Reproductive Isolation
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We study the structure and properties of adaptive landscapes arising from the assumption that genotype
fitness can only be 0 (inviable genotype) or 1 (viable genotype). An appropriate image of resulting
(‘‘holey’’) fitness landscapes is a (multidimensional) flat surface with many holes. We have demonstrated
that in the genotype space there are clusters of viable genotypes whose members can evolve from any
member by single substitutions and that there are ‘‘species’’ defined according to the biological species
concept. Assuming that the number of genes, n, is very large while the proportion of viable genotypes
among all possible genotypes, p, is very small, we have deduced many qualitative and quantitative
properties of holey adaptive landscapes which may be related to the patterns of speciation. Relationship
between p and n determines two qualitatively different regimes: subcritical and supercritical. The
subcritical regime takes place if p is extremely small. In this case, the largest clusters of viable genotypes
in the genotype space have size of order n and there are many of such size; typical members of a cluster
are connected by a single (‘‘evolutionary’’) path; the number of different (biological) species in the
cluster has order n; the expected number of different species in the cluster within k viable substitutions
from any its member is of order k. The supercritical regime takes place if p is small but not extremely
small. In this case, there exists a cluster of viable genotypes (a ‘‘giant’’ component) that has size of order
2n/n; the giant component comes ‘‘near’’ every point of the genotype space; typical members of the giant
component are connected by many evolutionary paths; the number of different (biological) species on
the ‘‘giant’’ component has at least order n2; the expected number of different species on the ‘‘giant’’
component within k viable substitution from any its member is at least of order kn. At the boundary
of two regimes all properties of adaptive landscapes undergo dramatic changes, a physical analogy of
which is a phase transition. We have considered the most probable (within the present framework)
scenario of biological evolution on holey landscapes assuming that it starts on a genotype from the
largest connected component and proceeds along it by mutation and genetic drift. In this scenario, there
is no need to cross any ‘‘adaptive valleys’’; reproductive isolation between populations evolves as a side
effect of accumulating different mutations. The rate of divergence is very fast: a few substitutions are
sufficient to result in a new biological species. We argue that macroevolution and speciation on ‘‘rugged’’
fitness landscapes proceed according to the properties of the corresponding holey landscapes.
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Introduction

What determines the number of species on earth?
Why are there so many (or, perhaps, so few) of them?
Could they all have evolved from a small number of
(or even a single) ‘‘protospecies’’? What underlies
inviability of hybrids between different species? How

genetically different are different species? These are
some of the most fundamental questions faced by
evolutionary theory. We will try to get some insight
into these and related questions about macroevolu-
tion combining the standard population genetics
framework with methods developed in the percolation
theory and the theory of random graphs.

First, one has to decide what a species is. There are
many definitions and concepts of species. Here we
shall use the biological species concept (Dobzhansky,
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1937; Mayr, 1942, 1963), which perhaps is the most
common definition. According to this definition,
species are groups of interbreeding natural popu-
lations that are reproductively isolated from other
such groups. Evolution of reproductive isolation is
influenced (at least potentially) by many genetical,
ecological, developmental, behavioral, environmen-
tal, and other factors in different ways. If one wants
to make the discussion less speculative, one should
necessarily concentrate on only some of them while
neglecting others. We will consider only post-zygotic
isolation manifested in (and defined as) zero fitness of
hybrids. Following most previous theoretical discus-
sions of the evolution of post-zygotic isolation, we
consider diploid populations under constant viability
selection, assuming that the loci are diallelic, that the
population is dioecious, that sexes are equivalent with
respect to fitness, and that mating is random. Within
this standard population genetics framework, an
individual is represented by a combination of genes
(i.e., its genotype) having some fitness.

Answers to the questions asked at the beginning of
this paper depend on the adaptive landscape (Wright,
1931, 1980), i.e., the relation between genotype and
fitness. Following Wright, adaptive landscapes are
usually imagined as having many local ‘‘adaptive
peaks’’ of different height separated by ‘‘adaptive
valleys’’ of different depth. Adaptive peaks are
interpreted as different species, adaptive valleys
between them are interpreted as unfit hybrids (e.g.,
Barton, 1989); adaptive evolution is considered as
local ‘‘hill climbing’’ (e.g., Kauffman & Levin, 1987).
However, there are problems with this description
and some of its implicit assumptions can be
questioned. For instance, is it appropriate to assume
that different species have different fitness? Small
differences in fitness between individuals are import-
ant in microevolution, but is this description
appropriate for macroevolution? What is basically
known is that there are some ‘‘good’’ combinations of
genes representing fit individuals and ‘‘bad’’ combi-
nations of genes representing unfit individuals (e.g.,
hybrids between different species). Microevolution, to
a large extent, can be considered as an optimization
problem, but is this so in the case of macroevolution?
There are additional considerations coming from
theoretical population genetics. Random genetic drift
is increasingly important in multilocus systems (e.g.,
Gavrilets & Hastings, 1995). With random drift there
can be practically no difference between survival
probabilities of individuals with ‘‘deterministic’’
fitness 1 and fitness 0.9 or between survival
probabilities of individuals with fitness 0.1 and fitness
0. Finally, there is a fundamental problem realized

already by Wright. How can a population evolve
from one local peak to another across an adaptive
valley when selection opposes any changes away from
the current adaptive peak? To solve this problem
Wright (1931) proposed a (verbal) shifting-balance
theory. Recent formal analyses of different versions of
the shifting-balance theory (Lande, 1979, 1985;
Barton & Rouhani, 1993; Rouhani & Barton, 1993;
Gavrilets, 1996; Coyne et al., 1996) have shown that
although the mechanisms underlying this theory can,
in principle, work, the conditions are rather strict.
Another possibility to escape a local adaptive peak is
provided by founder effect speciation (Mayr, 1942,
1954; Carson, 1968; Templeton, 1980; Gavrilets &
Hastings, 1996), but the generality of this scenario
remains controversial. All these factors and consider-
ations lead us to conclude that a different simplified
description of adaptive landscapes may be both
sufficient to get insight into the problem of speciation
and even be more accurate as far as macroevolution-
ary phenomena are concerned.

The basic assumption made here is that fitnesses
can take only two values: 1 (viable genotype) and 0
(inviable genotype). This description of adaptive
landscapes is very closely related to the idea proposed
by Dobzhansky almost 60 years ego (Dobzhansky,
1937). His original model considers a two-locus
two-allele population initially monomorphic for a
genotype, say aaBB. This population is broken up
into two geographically isolated parts. In one part,
mutation causes substitution of a for A and a local
race AABB is formed. In the other part, mutation
causes substitution of B for b, giving rise to a local
race aabb. It is assumed that there is no reproductive
isolation among genotypes AABB, AaBB and aaBB

and among genotypes aaBB, aaBb and aabb, i.e., all
offspring of matings within these two groups are
viable. In contrast, genotypes AABB and aabb are
considered to be reproductively isolated in the sense
that double heterozygote AaBb is inviable. In this
scheme, strong selection against hybrids between
races with the genotypes AABB and aabb can be
achieved, even though selection acting during the
evolutionary divergence is weak or absent.

Dobzhansky’s model implies that genotypes are of
two types (viable and inviable) and that viable
genotypes form ‘‘clusters’’ in genotype space so that
the population can move from one viable state to
another one separated by an adaptive valley following
a ‘‘rim’’ or a ‘‘path’’ of viable genotypes without
crossing any adaptive valleys. Populations diverge as
a consequence of accumulation of different mutations
(resulting from randomness of mutation and genetic
drift) and reproductive isolation arises as a side effect
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of these accumulating differences between popu-
lations. Founder events can increase the rate of
divergence, but divergence will also happen in stable
populations. Different properties of population
genetic models utilizing the same idea have been
discussed and formally studied (e.g., Nei et al., 1983;
Bengtsson & Christiansen, 1983; Bengtsson, 1985;
Barton & Bengtsson, 1986; Cabot et al., 1994;
Wagner et al., 1994; Orr, 1995; Gavrilets & Hastings,
1996). In all these papers the existence of a chain of
viable genotypes connecting two reproductively
isolated genotypes was postulated. Below we will
show that such chains (or clusters) of viable genotypes
are expected under broad conditions.

We shall assign genotype fitnesses randomly.
Random assignment of fitnesses often is used to get
ideas about some ‘‘general’’ properties of population
genetics models (e.g., Karlin & Carmelli, 1975;
Lewontin et al., 1978; Ginzburg & Braumann, 1980;
Turelli & Ginzburg, 1983). Properties of ‘‘rugged’’
landscapes with multiple peaks and valleys resulting
from the assumption that fitnesses take any values
between zero and one have been studied in a
pioneering paper by Kauffman and Levin (1987) and
in subsequent publications stimulated by that paper.
The main purpose of our paper is similar to that one
of Kauffman & Levin (1987). An appropriate three
dimensional image of the fitnesses landscape we are
interested in is a flat surface with a lot of holes like
in a slice of Swiss cheese. Here we will study the
structure of these ‘‘holey’’ landscapes resulting from
the assumption that fitnesses take only values 0 and
1. A major difference of our approach, besides the
assumption about possible fitness values and the
techniques used, is that it focuses on the problem of
speciation within the biological species concept. In
contrast, the approach developed by Kauffman &
Levin can be appropriate, in the strict sense, only if
populations are asexual haploid.

Here each genotype will have a fixed probability,
denoted by p, of being viable. Since p can also be
considered as the probability of obtaining a viable
genotype after combining genes randomly, it will be
assumed very small (cf, Orr, 1995). The probability p
can also be interpreted as a measure of environmental
hostility: the smaller p is, the more difficult it is to
survive. The probability p will be the same for all
genotypes in some models and will vary among
genotypes in other models. Under any form of
random fitness assignment, viable genotypes generally
will form sets in the genotype space connected by
evolutionary paths. Connected sets of sites in
multidimensional spaces are subject of percolation
theory (e.g., Ballobás, 1985; Grimmett, 1989), whose

terminology and methods we shall use. In the next
section, we present several notions and definitions
that will be used throughout the paper. After that we
consider questions related to the maximum possible
number of species in the whole genotype space. Then
we discuss properties of ‘‘holey’’ landscapes arising
when fitnesses are random. The last section
summarizes our findings and discusses biological
implications. An obvious limitation of our approach
is the fact that we do not include any ecological
factors.

Some Definitions

We consider diallelic loci whose number n typically
will be very large. We shall use standard notation
denoting alternative alleles at a locus with bold capital
and lower-case letters and using w for fitnesses. A
genotype formed by gametes i and j will be denoted
as i/j. We shall consider two representations of the
genotype space, i.e., the space of all possible
genotypes. The first version is the most general. Each
genotype is represented by a vertex of a 2n-dimen-
sional binary hypercube Bn = {0, 1}2n. The location of
a genotype on the i-th axes of Bn is determined by the
number of alleles (0 or 1) represented by the
corresponding capital letter at the i-th gene
(i=1, 2, . . . , 2n). The overall number of genotypes
in Bn is 4n of which 2n are homozygotes. An example
of the genotype space Bn for a single locus case is given
in Fig. 1(a). This representation allows for paternal-
maternal and cis-trans effects, i.e., one-locus geno-
types A/a and a/A are considered different, two-locus
genotypes AB/ab and Ab/aB are considered different
and so on. The second version of the genotype
space implies that neither paternal-maternal nor
cis-trans effects are present. Each genotype is
represented by a ‘‘point’’ on a n-dimensional
hypercube Qn = {0, 1, 2}n. The location of a genotype
on the i-th axes is determined by the number of alleles
(0, 1 or 2) at the i-th locus represented by the
corresponding capital letter (i=1, 2, . . . , n). The
overall number of genotypes in Qn is 3n of which 2n are
homozygotes. Examples of the genotype space Bn for
one, two and three loci are given in Fig. 1(b–d). This
representation of the genotype space is typical in
population genetics models.

We will assume that fitness (viability) can take only
two values: w=0 (inviable genotype) and w=1
(viable genotype). We will consider only non-neutral
loci. An appropriate formal definition of a neutral
locus is the following: locus A is neutral if

w(AG/AG ')=w(AG/aG ')=

w(aG/AG ')=w(aG/aG ')
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F. 1. Examples of genotype space. Genotype space Bn in the case of a single locus [part (a)]. Genotype space Qn for n=1, 2 and 3
[parts (b), (c) and (d), respectively]. In Fig. 1(d) only the genotypes on the ‘‘visible’’ side of the three-dimensional cube are shown.
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for all genotypes G and G ' in the remaining loci. This
definition reflects the idea that no changes in a neutral
locus affect fitness.

An offspring of a mating between two viable
genotypes is any genotype that can be produced as a
result of segregation and recombination. Two groups
of viable genotypes will be considered as representing
different species if all offspring resulting from matings
‘‘within’’ a group are viable and all offspring resulting
from matings ‘‘between’’ groups are inviable. For
example, in Dobzhansky’s model two different species
are represented by genotypes AABB and aabb.

A group of viable genotypes forming a species can,
in principle, include any number of genotypes. We
will be mainly interested in questions related to the
number of ‘‘biological’’ species. For this purpose, it is
sufficient to concentrate on only ‘‘monomorphic’’
species represented by a single homozygous genotype.
This follows from a simple fact that although a
‘‘polymorphic’’ species includes several homozygotes
and heterozygotes, there is no reproductive isolation
among them. Thus, a polymorphic species contributes
one and only one ‘‘monomorphic’’ species to the
count of ‘‘monomorphic’’ species. A pleasant
consequence of this property is that all complications
introduced by recombination are avoided without any
loss of generality.

A sequence of viable genotypes x0, x1, . . . , xN is an
evolutionary path if genotypes xi−1 and xi are different
in only a single gene. This means that genotype x0 can
evolve through viable genotypes into genotype xN

through fixation of consecutive mutations at a single
locus. For example, in Dobzhansky’s model the
evolutionary path connecting genotypes AAbb and
aaBB is AAbb, AABb, AABB, AaBB, aaBB. For any
viable genotype x, the connected component of x is the
set of all genotypes connected to x by an evolutionary
path.

We will denote by L1 the connected component
with the largest number of homozygotes and by L2 the
component with the second largest number of
homozygotes. We shall denote the size of Li , i.e., the
number of homozygotes in Li , as =Li =, and the number
of species in Li as Ni . Note that the number of species
in a connected component is bounded from above by
the number of homozygotes in this component, i.e.,
Ni E =Li =. We will consider the most probable (within
the present framework) scenario of biological
evolution assuming that it starts on a genotype from
the largest connected component and proceeds along
it by mutation and genetic drift.

The graph-theoretical distance between two geno-
types that belong to the same connected component
is the length of the shortest evolutionary path

connecting them. The Hamming distance between two
genotypes is the number of genes in which these
genotypes differ. For example, the Hamming differ-
ence between two two-locus genotypes AABB and
aabb is four. In Dobzhansky’s model, this is also the
graph-theoretical distance.

Throughout the paper, a statement as ‘‘an event
happens asymptotically’’ means that the probability
that the event happens converges to 1 as the number
of loci, n, becomes larger and larger.

Maximum Number of Species

We start by assuming that fitnesses can be assigned
in an arbitrary way. Two interesting questions arise
in this context. The first is about the maximum
possible number of different species interconnected by
evolutionary paths. The second is about the minimum
possible proportion of viable genotype that makes
these species connected by evolutionary paths.

We will consider maximum number of homozygous
species different in at least nmin loci, denoting their
number as N(n, nmin ) and the minimum proportion of
viable genotypes that connect them as p(n, nmin ). For
example, if nmin =2 and there are only two loci, then
the maximum number of species in Qn is two and the
minimum proportion of viable genotypes is 5/9, while
if there are three loci, N=4 and p=11/27 (see Fig.
2). Several more general cases can be treated
analytically (see the Appendix). For instance,

N(n, 2)=2n−1, p(n, 2)= (3·2n−1 −1)/3n, (1a)

N(n, 3)=2n−2, p(n, 3)= (3·2n−2 −1)/3n. (1b)

For example, if nmin =2 and n=100, N1 6·1029,
p1 4·10−18. If nmin is fixed, while n becomes very large,
then asymptotically

C1·n−(nmin −2)·2n EN(n, nmin )EC2·n−(nmin −1)/2·2n, (1c)

where C1 and C2 depend on nmin , but not on n. The
fact that any pair of genotypes can be connected by
an evolutionary path of at most 2n+1 viable
genotypes immediately implies that

N(n, nmin )E 3n·p(n, nmin )E 2n ·N(n, nmin ), (1d)

where 3n·p(n, nmin ) is the number of genotypes
forming evolutionary paths. Let nmin be a positive
proportion of n, say nmin = an for some 0Q aQ 1. If
aq 1/2, then N(n, nmin )E 2a/(2a−1), so that N does
not grow at all, and p decreases as n ·3−n with
increasing n. On the other hand, if aQ 1/2, then N
increases exponentially. For example, it is known that
the number of 0.1n-separated genotypes with n loci is
for large n between e0.386n and e0.481n, and so is [by virtue
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F. 2. Maximum number of homozygous species different in nmin =2 loci. Biological species are marked by Y; viable genotypes forming
evolutionary paths are marked by X; all other genotypes are inviable. (a) Genotype spaces Q2: two biological species; overall number of
viable genotypes is five (out of 9). (b) Genotype spaces Q3: four biological species; overall number of viable genotypes is 11 (out of 27).
Only the genotypes on the ‘‘visible’’ side of the three-dimensional cube are shown.

of (1d)] the number of genotypes necessary to connect
them. These, and many other, asymptotic bounds can
be found in Chapter 17 of MacWilliams & Sloane
(1977) and Chapter 9 of Conway & Sloane (1988).

Common sense suggests that the proportion of
viable genotypes among all possible genotypes should
be very small while the number of evolutionary
connected species may be large. To have a large
number of species, one should have a lot of viable
homozygotes and just enough viable heterozygotes to
form large connected sets. It is perhaps not too
surprising that one can construct a deterministic
model (such as the one above) in which this happens.
In the following sections, we show how the same
phenomenon may be exhibited if adaptive landscapes
are constructed randomly.

Random Fitnesses

Results presented below will have different degrees
of generality and mathematical strictness. As often
happens, the most complete analytical results are
derived for the least plausible model which we
consider in the next section.

    :   Bn

In this model, each genotype in Bn is viable with
probability pq 0 and is inviable with probability
1− p independently of other genotypes. Consider-
ation of the genotype space Bn implies that any change
in the genotype including the flip of genes in a
heterozygous locus (that is a change from Aa to aA)
results in a completely independent fitness value. With
large number of loci the overall number of viable
genotypes is approximately p ·4n. Among those there
are approximately p ·2n homozygotes and p ·2n(2n −1)

heterozygotes. The heterozygote/homozygote ratio is
approximately 2n. Any large connected component of
Bn has approximately the same heterozygote/ho-
mozygote ratio. If pq 1/2, then all viable genotypes
are connected with probability approaching one, i.e.,
there is a single component (Burtin, 1977; Erdös &
Spencer, 1979). Biologically that would mean that all
genotypes could evolve from any single genotype
without crossing any adaptive valleys. It can be
shown (see Bollobás & Thomason, 1985), that for p
values close to one, the number of species in this
component is of order −n/log2 (1− p), hence of
order O(1) when p1 1−2−n.

However, as was discussed above, it is more
realistic to assume p to be small. We will scale the
probability that a genotype is viable with the number
of loci n,

p= l/n, (2)

where l is allowed to depend on n.

Result 1(a): number of homozygotes in largest
connected components

Asymptotically, if lq 1/2, then for some positive
functions a and b of l

=L1=q a ·n−1·2n,=L2=E b ·n, (3a)

while if lQ 1/2,

=L1=E b ·n. (3b)

In the first case, when the proportion of viable
genotypes is bigger than the critical value 1/(2n), there
exist a ‘‘giant’’ component that includes a positive
proportion of all viable homozygotes (the number of
which is order n−1·2n because p is order 1/n). The
second largest component has a much smaller size,
order n. In percolation theory, this is usually referred
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to as the supercritical regime. In the second case when
the proportion of viable genotypes is smaller than the
critical value, no connected component has size bigger
than order n. This case is referred to as subcritical
regime. Thus, we have just shown that large
connected components whose existence was postu-
lated in Dobzhansky-type models are expected to
exist in this model even if the overall probability to
get a viable genotype is very small [e.g., of order
O(1/n)]. At the boundary between the sub-critical and
supercritical regimes the system undergoes a phase
transition, in the sense that the number of
homozygotes in the largest component experiences a
jump from order n to order 2n/n.

To understand percolation in high dimensions,
such as percolation on Bn , one thinks of Bn as
approximately a regular tree T in which each node
(genotype) has 2n neighbors, the same as the number
of neighbors in the genotype space. Assume that every
node in T is independently ‘‘viable’’ with probability
p, and ‘‘inviable’’ with probability 1− p. Since T is
now an infinite graph, we say that percolation occurs
if there is a infinite path in the graph T, consisting
entirely of ‘‘viable’’ nodes. The point is that it is very
easy to see exactly when percolation occurs: just
choose a viable node (a root) x0 $ T and observe that
the probability of an infinite path started at x0 is the
same as the probability of survival of the branching
process with expected number of successors equal to
p(2n−1). This shows that percolation occurs if
pq 1/(2n−1) and all paths are finite if pE 1/
(2n−1). The fact that the critical probability for
existence of long paths is roughly 1/(2n) remains true
for Bn . The tree comparison is useful for many other
questions as well.

The next result describes what happens with the
number of species. It shows that even when the overall
proportion of viable genotypes in the genotype space
is very small, say of order O(1/n), the number of
species in a connected component can be as large as
O(n2).

Result 1(b): number of species in the largest connected
component

Asymptotically if lq 1/2,

a2n2/lQN1 Q 2n2/l, N2 Q b2n , (4a)

while if lQ 1/2,

g2n/ln(1/(2l))QN1 Q n/ln(1/(2l)). (4b)

Here a2, b2, g2 are some positive functions of l.
To interpret this result, let us think of n as fixed,

and l as starting at n (so that p1 1) and continuously
decreasing towards zero. The number of species in the

giant component then starts at one, quickly increases
to order n when l1 (1− e)n with some eq 0, and
then increases steadily until l is order 1 (and p is order
1/n), when N1 becomes of order n2. Then, when l is
about 1/2, i.e., at the point of phase transition, the
number of species in the largest connected component
suddenly drops down to order n. After that it
continues to decrease slowly (being for example of
order n/ln(n) when l1 1/n). Figure 3 illustrates these
features. Note that besides the point of phase
transition at p1 1/(2n), the number of species
undergoes a dramatic change in the neighborhood of
p=1.

Result 1(c): the geometric structure of L1

The supercritical regime. If lq 1/2,

(i) the expected proportion of points in Bn within the
Hamming distance 2 from L1 converges to 1 as
n 4a, while the probability that every point in
Bn is within Hamming distance 3 from L1

converges to one. This means that in the
supercritical regime, L1 comes ‘‘near’’ every point
of Bn ;

(ii) typical members of L1 are connected by a large
number of evolutionary paths: for every two
genotypes x and y, and any positive integer k,
asymptotically there are at least k disjoint
evolutionary paths connecting x and y;

(iii) the Hamming distance and the graph-theoretical
distance between two typical points on L1 have
the same order. This means that typical points on
L1 can be connected by evolutionary paths that
are not extremely windy. At the same time,
points that are close to each other (in the
Hamming distance) may be connected by
evolutionary paths that are much longer than the
Hamming distance.

(iv) for large k (for example, for k= an) the number
of different species in L1 within k viable
substitutions from x0 is of the order k ·n, i.e. is
very large.

The subcritical regime. If lQ 1/2,

(i) there is a large number of connected components
of size O(n). A typical point of Bn will be at the
Hamming distance O(n) from the closest one of
these components. The connected components
are very ‘‘thin’’;

(ii) typical members of L1 are connected by a single
evolutionary path;

(iii) asymptotically, the ratio of the Hamming
distance and the graph-theoretical distance
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between two typical points on a connected
component is one.

(iv) for large k (for example, for k= an) the number
of different species in L1 within k viable
mutations from x0 is of the order k, i.e. is very
small.

Let us consider a genotype x0 on the giant
component. Eventually, all genotypes in L1 can evolve
from x0, but how fast? Let Ij be the probability that
the first speciation event happens after substitution
number j. Dependence of this probability on the
number of loci n is suppressed in the notation; the
inequalities below are valid in the limit as n 4a.

Result 1(d): the rate of speciation on L1

Both in the supercritical and subcritical regimes,
the first speciation event happens after substitution
number j with probability Ij which is bounded by

1−2j/02j
j 1E Ij E 1− (e−ll)2j·2j/02j

j 1.
For example, I2 e 1/3 and I3 e 3/5. In general, Ij is
bounded below by a number which goes, very fast, to
one as j increases (see Fig. 4). This result shows that
speciation is an inevitable consequence of accumulat-
ing different mutations (cf., Orr, 1995).

    :   Qn

In this model, each genotype in Qn is viable with
probability pq 0 and is inviable with probability
1− p independently of other genotypes. The model
implies that flips of genes in heterozygous loci (that
is change from Aa to aA etc.) do not change fitness
value or, in biological terms, that paternal-maternal
and cis-trans effects are absent. With large number of
loci the overall number of viable genotypes is
approximately p ·3n. Among those there are approxi-
mately p ·2n homozygotes and p ·(3n −2n) het-
erozygotes. The heterozygote/homozygote ratio is
approximately (3/2)−n. Any large connected com-
ponent of Qn has approximately the same het-
erozygote/homozygote ratio. It can be shown that if
pq 2−z2, then all viable genotypes are connected
with probability approaching one.

As before we will assume that p is very small and
use the scaling (2).

Result 2(a): number of homozygotes in largest
connected components

Asymptotically if lq 1,

=L1=q a ·n−1·2n,=L2=E b ·n, (5a)

if lQ 1/2,

=L1=E b ·n, (5b)

and if l $ (1/2, 1),

2a1n Q =L1=Q 2a2n. (5c)

Result 2(b): number of species in the giant component

If lq 1, then asymptotically

a ·Xn
p

EN1 E
1
2
·0np1

2

, (6)

where a is a positive constant.
The boundaries on the number of species that we

have been able to find are much broader for this
model than in the previous one. However, some
additional considerations make the following conjec-
ture very plausible.

Conjecture B. In the supercritical regime the
number of species N1 is order n/p.

Results 2(c) and (d)

The geometrical structure of L1 in Qn and the rate
of speciation on L1 are similar to those of L1 in Bn

described in Result 1(c) and (d).
Results 2(a)–(d) show that qualitative properties of

holey landscapes in this model (such as existence of
connected components, existence of two drastically
different regimes, phase transition at the boundary of
these regimes etc.) are similar to those in the model
considered in the previous section.

 :   Qn

In this model, each genotype in Qn is viable with a
probability that decreases geometrically with number
of heterozygous loci, i.e., each genotype is assigned
fitness 1 with probability

p ·a(of heterozygous loci.

Here a is a constant between zero and one and p is
a small value which can depend on n. This model is
an analog of the multiplicative model in population
genetics. As before the model implies that paternal-
maternal and cis-trans effects are absent. Note that
the expected number of viable genotypes in this model
is p(2+ a)n and, thus, the proportion of viable
genotypes in the genotype space is approximately
p(2+ a)n/3n and extremely small.

We will scale the probability that a genotype is
viable with the square root of the number of loci, n,

p= l/zn (7)

where l is allowed to depend on n. Since homozygotes
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have a large fitness advantage, one can expect that
most of the evolutionary action happens in relatively
small neighborhoods of homozygotes; next theorem
makes this more precise.

Result 3(a): number of homozygotes in the largest
component

Asymptotically if lq 1/za, then

=L1=q a ·n−1·2n (8a)

and if lQ (1/2)a ·ln(1/a), then

=L1=Q b ·n ·ln(n). (8b)

Here a and b are some positive functions. Note that
for the giant component to exist, p (the probability of
survival for homozygotes) should be much bigger
(order 1/zn) than in the previous models (where it
was order 1/n).

Next theorem establishes that the number of species
in the supercritical regime is exponentially large in
this case.

Result 3(b): number of species in the giant component

The number of species in the supercritical regime is
exponentially large in the sense that there exist a
constant a1 q 0 such that

N1 q ea1n. (9)

This shows that the multiplicative model can
provide an enormously large number of species while
keeping the proportion of viable genotypes extremely
small (cf. the section ‘‘Maximum number of species’’).
Although we are not able to give more precise
exponential asymptotics for the number of species, we
can conclude that in this case the largest number of
species in a component drops even more dramatically
between the supercritical and sub-critical regime:
from exponential in n to the size at most n ·ln(n)
(which is the number of homozygotes in the largest
component). While presumably many geometrical
aspects of L1 remain the same as in the previous two
models, this aspect of the multiplicative model
remains largely unclear. However, we still expect that
qualitative properties of holey landscapes in the
multiplicative model are similar to those in the models
considered in the previous sections.

Discussion

The standard methodology of theoretical popu-
lation genetics is to analyze the dynamics of gene
frequencies assuming some relationship between
fitness and genotype (i.e., assuming some adaptive
landscape). This approach does not allow to study

questions related to macroevolution which depend on
the structure of adaptive landscape over the whole
genotype space. Our paper represents an attempt to
analyze the structure and properties of typical fitness
landscapes in some general models.

A widely accepted picture of adaptive landscapes,
which goes back to Wright (1931), is the one with
many adaptive peaks of different height separated by
adaptive valleys of different depth. However, this
representation of adaptive landscape has limitations
discussed at the beginning of this paper (see also
Whitlock et al., 1995). Here we have studied a
different family of adaptive landscapes, which can be
traced to a model proposed by Dobzhansky (1937).
The basic assumption underlying our approach is that
genotypes can be only of two types: viable and
inviable. An appropriate image of resulting fitness
landscapes is a flat surface with many holes. We feel
that these ‘‘holey’’ adaptive landscapes may be a more
appropriate model for studying patterns of speciation
and macroevolution. Note that assuming fitnesses to
be 0’s and 1’s does not contradict observations of
intermediate values since these observations are
averages over genetic background. Thus, this
assumption is applicable to much more general
settings than it might initially appear (Lev Ginzburg,
personal communication).

Starting with the only assumption that there are
‘‘good’’ and ‘‘bad’’ combinations of genes we have
demonstrated that in the genotype space (i) there are
clusters (connected components) of viable genotypes
whose members can evolve from any member by
single mutations and drift, and (ii) there are species
defined according to the biological species concept.

Previously existence of clusters of viable genotypes
with different biological species was postulated
(Dobzhansky, 1937; Nei et al., 1983; Bengtsson &
Christiansen, 1983; Bengtsson, 1985; Barton &
Bengtsson, 1986; Cabot et al., 1994; Wagner et al.,
1994; Orr, 1995; Gavrilets & Hastings, 1996). In
contrast, we have shown it to be expected under
broad conditions.

Making two additional assumptions that the
number of genes is very large while the proportion of
‘‘good’’ combinations of genes is very small, we have
deduced many qualitative and quantitative properties
of adaptive landscapes which may be related to the
patterns of speciation. Depending on the relationship
between the proportion of viable genotypes among all
possible genotypes, p, and the number of loci, n, there
can be two qualitatively different regimes: subcritical
and supercritical.

The subcritical regime takes place if the proportion
of viable genotypes is extremely small. For example,
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in models with equal probabilities to be viable this
happens if pQ 1/(2n). In the subcritical regime, the
largest clusters of viable genotypes in the genotype
space have size of order n and there are many of them.
Typical members of a connected component are
connected by a single path. This path is straight in the
sense that along it, substitution in a locus can happen
only once. The overall number of different species on
a connected component has order n. The expected
number of different species on a connected com-
ponent within k viable substitution from any its
member is of order k, i.e. is small.

The supercritical regime takes place if the
proportion of viable genotypes is small but not
extremely small. For example, in models with equal
probabilities to be viable this happens if pq 1/(2n).
In the supercritical regime, there exists a cluster of
viable genotypes (a ‘‘giant’’ component) that includes
a positive proportion of all viable homozygotes. The
‘‘giant’’ component, which has size order of 2n/n,
comes ‘‘near’’ every point of the genotype space.
Typical members of the giant component are
connected by many evolutionary paths which are not
extremely windy. The number of different species on
the giant component has at least order n2. The
expected number of different species on a connected
component within k viable substitution from any its
member is at least of order kn, i.e is very large. At the
boundary of two regimes all properties of adaptive
landscapes undergo dramatic changes, a physical
analogy of which is a phase transition.

We have considered the most probable (within the
present framework) scenario of biological evolution
on holey landscapes assuming that it starts on a
genotype from the largest connected component and
proceeds along it by mutation and genetic drift. In
this scenario, there is no need to cross any ‘‘adaptive
valleys’’. Reproductive isolation between populations
evolves as a side effect of accumulating different
mutations. The rate of divergence is very fast: a few
substitutions are sufficient to result in a new biological
species (cf, Orr, 1995).

All of the above conclusions are qualitatively valid
in three different models that we have considered,
thereby suggesting their considerable generality.

    /

In this section we discuss relations of our results to
some previous ideas and approaches.

Connected sets in the sequence space

Maynard Smith [1970; see also Conrad (1982) for
discussion] argued that divergent protein evolution is
impossible in historical time unless fMq 1, where M

is the number of proteins which can be derived from
a functionally useful protein and f is the fraction of
these with an acceptable selective value. He stated
that if fMq 1, then functional proteins form a
continuous network in the protein space which can be
traversed by unit mutational steps without passing
through nonfunctional intermediates. Using our
notation, with n diallelic loci, M=2n, and with only
two possible fitness values (0 or 1) f= p. Thus,
Maynard Smith’s condition corresponds to our
condition pq 1/(2n) for the supercritical regime
under which there exists a giant connected component
of viable genotypes which expands through the whole
genotype space. Existence of very large connected sets
of RNA sequences folding to the same secondary
structures has been demonstrated in recent numerical
works (Schuster et al., 1994; Huynen et al., 1996).

‘‘Extra-dimensional bypass’’

Conrad (1990) puts forward an idea of an
‘‘extra-dimensional bypass’’ on adaptive surfaces.
According to Conrad an increase in the dimensional-
ity of an adaptive landscape is expected to transform
isolated peaks into saddle points that can be easily
escaped resulting in continuing evolution. The
increase of the dimensionality of the adaptive
landscape might be a consequence of an increase in
the size of genome. This idea is closely related to
arguments used by Fisher in his critiques of Wright’s
presumption that selection would tend to confine
populations to local peaks in an adaptive landscape
and thus prevent them from finding higher peaks.
Fisher (see Provine, 1986, pp. 274–275; Ridley, 1993,
pp. 206–207) pointed out that as the number of
dimensions in an adaptive topography increases, local
peaks in lower dimensions tend to become saddle
points in higher dimensions. In this case, according to
Fisher, natural selection will be able to move the
population to the global peak without any need for
genetic drift.

Our results provide a formal justification of the idea
of an ‘‘extra-dimensional bypass’’. Let us fix the
number of loci and consider a population that
belongs to a ‘‘small’’ connected component and, thus,
has only limited possibilities to evolve. Assume also
that in the genotype space there exists another ‘‘large’’
connected component, which, however, cannot be
explored by the population. If the number of loci
increases while p is kept constant, the two connected
components will eventually belong to the same giant
component with a positive probability. [A possible
mechanism for increasing the number of loci is gene
duplication. For a recent theoretical analysis see
Walsh (1995)]. This follows from the fact that the
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critical p value decreases as n 4a and the systems
moves to the supercritical regime where a positive
proportion of all viable genotypes belong to the giant
component. If p is small, any two viable genotypes
will typically become connected by an evolutionary
path when n1 1/p. That shows that increasing the
number of loci would allow to explore the whole
genotype space.

Relationships between species diversity and quality of
the environment

As was mentioned above a key parameter of our
model, probability p, can also be interpreted as a
measure of environmental hostility: the smaller p is,
the more difficult it is to survive. Our results indicate
that the number of species in the largest connected
component is a unimodal function of p, which
achieves its maximum near the point of phase
transition (see Fig. 3). Thus, the model predicts that
‘‘species diversity’’ (number of species) should be a
hump-shaped function of the ‘‘quality’’ or ‘‘pro-
ductivity’’ of the environment (measured by p) with
maximum species diversity at intermediate values of
quality of the environment (cf, Rosenzweig &
Abramsky, 1993).

Evolution on ‘‘rugged’’ landscapes

The results presented here allow to get some
additional information about uncorrelated ‘‘rugged’’
landscapes of Kauffman and Levin (1987). These
fitness landscapes arise if genotype fitness, w, is a
realization of a random variable having uniform
distribution between zero and one. Assume that there
is a rugged landscape. Let us introduce a threshold
value, wc =1− p, and construct a holey landscape in

F. 4. The lower bound on the probability of speciation Ij after
substitution number j.

that a genotype has fitness 1 if its fitness in the rugged
landscape is larger then wc , and fitness 0, if its fitness
in the rugged landscape is smaller or equal to wc .
According to our results on holey landscapes if
pq 1/(2n), there exists a giant component of viable
genotypes which extend throughout the whole
genotype space. This giant component is generated by
genotypes that have fitness at least 1− p in the
corresponding rugged landscape. That means that in
the rugged landscapes there are very high ‘‘ridges’’
(with genotype fitnesses between 1− p and 1) that
continuously extend throughout the genotype space.
In a similar way, if we choose wc = p, it follows that
the rugged landscapes have very deep ‘‘gorges’’ (with
genotype fitnesses between 0 and p) that also
continuously extend throughout the genotype space.
Finally, one can choose two threshold values, wc1 and
wc2 such that wc1 −wc2 = p, and construct a holey
landscape in that a genotype has fitness 1 if its fitness
in the corresponding rugged landscape is between wc1

and wc2. Proceeding as before, one can show that the
rugged landscape has ‘‘levels’’ with genotype fitnesses
between wc1 and wc2 that again continuously extend
throughout the genotype space.

A finite population subject to mutation is likely to
be found on a fitness level determined by mutation-se-
lection-random drift balance. Genotypes with
fitnesses close to this level form a corresponding giant
component. The population is prevented by selection
from ‘‘slipping’’ off this component to genotypes with
lower fitness and by mutation (and recombination)
from ‘‘climbing’’ to genotypes with higher fitness. A
population which has reached the giant component
should be kept on it and further evolution should
proceed in a quasi neutral fashion according to the
properties of holey landscapes (cf, Woodcock &

F. 3. Number of species in the largest connected component,
N, as function of p on a log-log scale for n=1000. The circle marks
the point of phase transition at p1 1/(2n).



.   . 62

Higgs, 1996). According to this scenario, microevolu-
tion and local adaptation can be viewed as climbing
of the population towards the holey landscape,
whereas macroevolution and speciation can be viewed
as a movement of the population along the holey
landscape.
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APPENDIX

In this section, we very briefly sketch the proofs of
the main results. Detailed proofs will appear
elsewhere.

We start by remarking that the problem of
determining N for general n and nmin arises in the
theory of error correcting codes (MacWilliams &
Sloane, 1977; Conway & Sloane, 1988). The results
(1a) for n2min =2 follow from simple computations:

N(n, 2)= s
k mod2=0 0nk1=2n−1, (A.1)

3np(n, 2)=2·0A+ s
k mod2=1 0n−1

k 11−1

=3·2n−1 −1. (A.2)

Then formulae (1b) for nmin =3 follow from the
following identity, valid for odd nmin :
N(n−1, nmin −1)=N(n, nmin ).

Result 1(a). This can be proved using results in
(Bollobás et al., 1992).

Result 1(b). The upper bound is quite straightfor-
ward, because the probability of having k viable
species in the entire Bn is at most

02n

k1pk(1− p)k(k−1)/2,

which gives the desired bound. To prove the lower
bound in the supercritical regime, one uses the ideas
from Bollobás et al. (1992) and Bollobás &
Thomason (1985). To give the indication how this
works, fix a large number N of homozygotes and a
small pq 0. How many species can we expect (ignore
the connectivity)? Put the N genotypes in a row, and
examine them one by one. The second species emerges
after about ep examinations (actually 1/(1− p), but p

is small), and for the third, about e2p more
examinations are needed. The number of species k
thus satisfies the approximate equation:

ekp 1N c k1 ln N
p

.

This gives a relatively small number of genotypes
versus the size of the hypercube, so it is relatively easy
to connect a positive proportion of them together.

Finally, a standard branching process comparison
handles the subcritical regime.

Result 1(c). The arguments here are variations on
those found in the random graph literature, see
Bollobás (1985), Bollobás et al. (1992, 1995), Dyer
et al. (1987), and Palmer (1985).

Result 1(d). These statements are results of a
combination of combinatorial arguments and those
from references above.

Result 2(a). This is proved by standard methods, as
found in Bollobás et al. (1995).

Result 2(b). The upper bound follows from the fact
that for any set GWQn of k homozygotes, the smallest
possible number of heterozygotes obtained by mating
genotypes in G is k3/2 [see Bollobás & Leader (1990)
for a similar result]. For the lower bound, one
estimates the probability of the event that no
heterozygotes are viable on the sub-cube Q6log2(k/p)7,
while all homozygotes are connected to the giant
component.

The following non-rigorous, but convincing,
argument shows that N1 should be of order n/p, for
n large and pe 1/n small.

Imagine that QnWQn+1, by adding a 0 at the end
of every genotype in Qn . If we have k species in Qn ,
then the expected number of all genotypes in Qn+1/Qn

which produce inviable genotype by mating with
every one of k species is

2n·(1− p)k 1 en log 2− pk.

Assume k= cn/p, for a constant c. If cQ log 2,
the number is exponentially large and, presumably, it
is easy to select a subset of size 1/p consisting of
different species from this large set. On the other
hand, if cq log 2, then with probability close to 1
there is not even one new species in the entire
Qn+1/Qn .

Result 3(a). The supercritical part (8b) follows
directly from Ajtai et al. (1982) and Bollobás et al.
(1992). To prove the subcritical part (8a), we start by
observing that the probability that, say, (0, . . . , 0)
survives on a self-avoiding path of m steps is bounded
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above by

pp s
paths of length m

anumber of 1’s on the path.

A slightly involved combinatorial argument can be
used to get an upper bound on this expression.

Result 3(b). The first step is to prove that, with

overwhelming probability, no genotype with czn or
more heterozygotic loci is in L1, given that
cq 2/log(1/a). Then one can use bounds from the
theory of error-correcting codes (MacWilliams &
Sloane, 1977; Conway & Sloane, 1988) to get a set S1

of, say, 0.1n-separated homozygotes from L1 with size
=S1=e e0.3n, which are with high probability all
different species.


