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ON PHASE THREE OF THE SHIFTING-BALANCE THEORY
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Abstract.

A common conclusion in several recent publications devoted to the deterministic analysis of the third phase

of Wright’s shifting-balance theory is that under reasonable conditions phase three should proceed easily. I argue that
the mathematical equations analyzed in these papers do not correspond to the biological situation they were meant
to describe. I present a more appropriate study of the third phase of the shifting balance. My results show that the
third phase can proceed only under much more restricted conditions than the previous studies suggested. Migration
should be neither too strong not too weak relative to selection. The higher peak should be sufficiently dominant over
the lower peak. Recombination can greatly reduce the plausibility of this phase or completely preclude peak shifts.
A very important determinant of the ultimate outcome of the competition between different peaks is the topological
structure of the network of demes. Peak shifts in two-dimensional networks of demes are more difficult than in one-
dimensional networks. Phase three can be accomplished easiest if it is initiated in one of the peripheral demes.
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A standard result in population genetics theory, which goes
back to Fisher (1930), is that selection increases the mean
fitness of the population. Presumably, because of epistasis
and pleiotropy, the mean fitness has many local ‘‘peaks”
separated by ‘‘adaptive valleys’ (Wright 1931, 1980). Nat-
ural selection leads a population to a nearby peak. The ques-
tion is how the population can cross an adaptive valley and
reach a higher peak. Wright suggested that this can happen
in a population subdivided into many partially isolated
groups. In Wright’s scenario, a new adaptive combination of
genes first stochastically becomes established in a single sub-
population (or, in the continuous version of the theory, in a
sufficiently large spatial area) and then takes over the whole
population. Two stochastic and one deterministic mecha-
nisms of the latter stage (phase three in Wright’s terminology)
have been formally studied. Lande (1979, 1985a) considered
a situation when a new combination of genes that has sto-
chastically become established in a single subpopulation
takes over the whole population as a result of stochastic ex-
tinction and colonization. In Barton and Rouhani’s (1993)
and Rouhani and Barton’s (1993) models, the influx of mi-
grants from demes carrying a new combination of genes
makes it more likely that the deme will shift to this com-
bination as a result of random fluctuations.

Several recent papers considered the spread of a new com-
bination of genes as a deterministic process (Crow et al. 1990;
Barton 1992; Kondrashov 1992; Phillips 1993). Crow et al.
(1990) concluded their paper saying that “whatever weak-
nesses the Wright theory may have, they are not in phase III,
(p. 246).” The conclusion section of Phillips (1993) says:
“In the end, it is unlikely that phase III is the limiting step
in the shifting-balance process in the sense that under rea-
sonable conditions phase III should easily proceed, (p.
1742).”” Kondrashov (1992) agreed that a very low migration
is sufficient to fix the incoming genotype. Barton (1992) dis-
agreed only about interpretation: ‘“The striking results of
Crow et al. are not due to selection in favor of a novel com-
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bination of genes, but rather, reflect the power of gene flow
over selection . . .”” (p. 556) and argued that “‘the new gene
combination spreads not because it is fitter, but because a
low rate of immigration can swamp selection, and establish
even a deleterious allele” (p. 552). Altogether this seems to
have ruled out the pessimism of Haldane (1959) who con-
sidered phase three as the weakest point of Wright’s theory.
It is these four papers and their conclusions that concerns us
here.

The basic model analyzed in these papers describes a pop-
ulation subdivided into two subpopulations (demes) con-
nected by migration. The mean fitness has two local maxima,
and, initially, one advantageous combination of genes is fixed
in one deme and another advantageous combination of genes
is fixed in the other deme. This model and its variants were
used to argue that very low migration (relative to selection)
is sufficient to move the whole system to the higher peak.

There are two assumptions in this model that deserve dis-
cussion. The first is that there are only two subpopulations
initially fixed for different advantageous (combinations of)
genes. Presumably, this was considered as a simplified but
still representative model for a population subdivided into
many groups. Let us look at the system of two demes as a
whole. The assumption that initially one deme is fixed for
one combination of genes and another deme is fixed for a
fitter combination of genes implies that in the whole system
the fitter genes have already reached the frequency of at least
50%! In models with unidirectional migration, which results
from the assumption that one of the demes has much larger
size, the initial frequency of the fitter genes in the whole system
will be even higher. Obviously, this initial situation is quite
different from the usual scenario: one of many subpopulations
is at a new higher peak, whereas the remaining subpopulations
are still at the old peak. In some sense, the interaction between
two subpopulations with the specified above initial conditions
more closely resembles the second phase (mass selection) of
the shifting-balance theory than the third phase. Phase two
occurs readily, and this seems to be the reason why the fitter
peak took over easily in the previous models.

The second assumption concerns the description of mi-
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gration. The above-mentioned authors assumed that a con-
stant migration rate to the initially low fitness deme was
different (typically much higher) from a constant migration
rate to the initially high-fitness deme. Presumably, the as-
sumption about migration rates in the opposite directions
being constant and different was considered as a reasonable
model for Wright’s idea about excess emigration from the
fitter subpopulation. Let us ask a question: how can migra-
tion rates in the opposite directions be different? First, there
can be some external (for the population) differences. For
example, migration towards the patch occupied by one of
the subpopulations can be more difficult because of some
physical force (e.g., gravity or wind). Or, the patches them-
selves can be different with one of them having a higher
carrying capacity and, thus, provided everything else is
equal, sending more migrants. These situations can be ad-
equately modeled by assuming that migration rates in the
opposite directions are constant and different but are not
related to phase three of the shifting-balance theory. Second,
migration rates in the opposite directions can be different
because of some internal (for the population) differences.
For example, different genotypes can have different ten-
dencies to migrate. This situation, however, is beyond the
scope of Wright’s theory. What he had in mind is excess
emigration from the fitter subpopulation as a consequence
of an excess population growth. This mechanism implies
that the proportion of new emigrants is not constant but
changes in time with changes in the population density and/
or fitness. For example, as the initially low-fitness subpop-
ulation approaches the state of the fitter subpopulation, the
proportion of new emigrants is supposed to be reduced. As
emphasized by Svirezhev and Passekov (1990, ch. 7), to be
correct a population genetics model with constant differ-
ential migration should include an additional mechanism,
which maintains constant sizes of the subpopulations. With-
out such a mechanism (which in no way appeared in the
models that we discuss here), the differences in the migra-
tion rates can be attributed only to nongenetical factors.
Summarizing, a well-grounded model for the interactions
between different peaks should consider many demes si-
multaneously and either include as a component the depen-
dence of the emigration rate on the population state or as-
sume, as a simplification, that the migration rates in the
opposite directions are equal.

The general conclusion of this discussion is that the math-
ematical equations analyzed in the papers cited above do not
correspond to the biological situation they were meant to
describe and that the results discussed in these papers are not
closely related to the third phase of Wright’s shifting-balance
theory. In the next section, I shall present a more appropriate
study of the third phase of the shifting balance. I shall start
with a simple model that assumes that migration rates in the
opposite directions are equal and do not depend on the state
of demes. Then I consider a model with differential migration
rates and population regulation. My results will suggest that
the takeover of the higher peak is not as easily achieved as
the previous studies lead one to believe. I shall show that
both evolutionary factors (selection, recombination, and mi-
gration) and the geometrical structure of the population can
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significantly affect the ultimate outcome of the competition
between different peaks.

SINGLE Locus PEAK SHIFTS

I consider a population with discrete generations. To sim-
plify the presentation, I shall approximate the corresponding
recurrence dynamics equations with differential equations. A
standard justification for this approximation is the assumption
that both selection and migration are weak. Under this ap-
proximation, the exact order of selection and migration does
not matter. I start with a single-locus case in which individuals
with genotypes aa, aA, and AA have relative fitnesses (via-
bilities) 1, 1 — S, and 1 + K, respectively (K, S = 0). With
this selection scheme, the mean fitness of the population has
two local maxima at (two) homozygous states. Let p be the
frequency of allele A. The rate of change of p under selection
in an isolated population (deme) is approximated by

dp _
dt

where 2s = 2S + K = 0, P = S/(25 + K) < 1/2. The local
dynamics are simple: if initially p < P, then the population
evolves to the fixation of allele a, and if initially p > P the
population evolves to the fixation of allele A. Thus, the pa-
rameter P characterizes the relative dominance of one peak
over another: if P = 0.5, both peaks have equal domains of
attraction, if P << 0.5, one peak strongly dominates the other.
The parameter s describes the overall strength of selection:
the larger is its value, the faster the population evolves.
Now let us consider a network of demes, each of which,
in general, exchanges a proportion m of its inhabitants with
neighboring demes in each generation. A deme at the border
of the network has fewer neighboring demes and, as a con-
sequence, exchanges a smaller proportion of its inhabitants
(see below). All demes have the same size that is maintained
by some sort of population regulation acting independently
within each deme, that is, selection is soft (Nagylaki 1992,
ch. 6). In this model, the rate of change of the frequency of
allele A in deme i is (Barton and Rouhani 1991, eq.1):

2sp(1 — p)(p — P), (1)

dp; -
= 29p(1 = p)p, — B) + m By @)
where Ap; is related to the pattern of gene flow among demes
and depends on the topology of the network (see below). I
shall assume that initially one of the demes (deme 0) is fixed
for allele A, whereas all other demes are fixed for allele a:

pO) =1, ifi=0  pO =0, ifi*0. (3)

Note that although (2) has three parameters, namely, m, s,
and P, only the ratio of the first two is important. (To see
this one has to divide both sides of (2) by 2s and make a
variable change to new time T = 2st.) In what follows, I shall
use two parameters: the strength of migration relative to se-
lection, € = m/4s, and the relative advantage of the higher
peak, P. In the next sections, I shall consider how the ultimate
outcome of the dynamics of (2) with initial conditions (3)
depends on €, P, and on the topology of the network of demes
reflected in Ap;. The previous studies of the third phase of
the shifting-balance theory analyzed how the dynamics de-
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Regions in parameter space (m/4s,P) corresponding to the different outcomes of the peak competition in the one-locus models.

(A) Two-deme models with one-way (solid line) and two-way (dashed line) migration. In two-deme models, two different outcomes are
possible: the new peak takes over (for parameter values above the corresponding line) or both peaks coexist (for parameter values below
the corresponding line). (B) One dimensional stepping-stone model with the fitter deme at the border of the network of demes. (C) One-
dimensional stepping-stone model with the fitter deme inside the network of demes. (D) Two dimensional stepping-stone models with
four (solid lines) and six (dashed lines) nearest neighbors with the fitter deme inside the network of demes. In multideme models three
different outcomes are possible: the old peak takes over (in the area adjacent to the upper border of figures), both peaks coexist (in the
area adjacent to the x-axes), or the new peak takes over (in the remaining part of parameter space).

pend on the strength of migration relative to selection. How-
ever, the influence of the relative dominance of the higher
peak, P, on the dynamics was not analyzed in detail and only
simple two-deme networks of demes were considered.

Two Demes

To illustrate the difference discussed above between the
two-deme models analyzed by Crow et al. (1990), Barton
(1992), Kondrashov (1992), and Phillips (1993), and multi-
deme models, I first consider a system of two demes.

One-Way Migration from the Fitter Deme.—In this case,
deme 0, which is fixed for allele A, does not change its state.
The allele frequency dynamics in deme 1 are described by
(2) with Ap, = 1 — py:

dp,

i “

2spi(1 = p(py — P) + m(1 — py).

Discrete time analogues of this equation have been studied.
Barton (1992) considered a case of symmetric peaks, that is,

P = 0.5. In Kondrashov’s (1992) model parameters s and P
were connected by the equality sP = 1. The behavior of (4)
is trivial if:

P28, (5)

the new peak takes over and allele A becomes fixed in the
whole system. If the inequality in (5) is reversed, the new
peak is not able to take over, and the first deme remains
polymorphic indefinitely. Figure 1A shows that the critical
ratio of the rates of migration and selection, €*, is small and
increases with increasing P.

Two-Way Migration.—In this case, allele frequencies in
both demes change. To describe the dynamics, one needs two
equations in the form (2) with

€ = mlds > e* =

Apo = pi = pPo.  Ap1=po — p1- (6)

A partial case (with P = 0.5) of this dynamic system was
discussed by Karlin and McGregor (1972) and Barton and
Rouhani (1991). The possible outcomes in this model are fix-
ation of allele A (for large €) or maintenance of genetic vari-
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ability with allele A dominating in deme O and allele a dom-
inating in deme 1 (for small €). The critical value of €, that
is, the value that separates these two regimes, depends on P.
Dependence of the critical value of € on P can be approximated
using a small-parameter method, which has proved to be very
useful in studies of migration effects (Svirezhev 1968; Karlin
and McGregor 1972; Svirezhev and Logofet 1983, ch. 8.5;
Svirezhev and Passekov 1990, ch. 7). However, instead of
presenting the corresponding formulae, here and in what fol-
lows, I approximate the critical values of € by solving the
dynamics equations numerically. There are two reasons for
this. The first is that the resulting formulae are cumbersome,
and the best way to understand what they describe is to present
them graphically. The second reason is that the analyzed sys-
tem is one of rare cases of dynamic systems whose behavior
can be effectively studied using numerical simulations. Its
dynamics are well understood, and it has only two parameters
(or three in the models studied in the last section). The nu-
merical analysis is at least as informative as possible analytical
approaches, yet it requires less effort. An approximation for
the dependence of the critical value of € on P for the two-
deme model with two-way migration was determined numer-
ically and is presented in Figure 1A. Comparison of the two
curves in Figure 1A shows that although reverse migration
changes critical value of €, the effect is not dramatic. With
only two demes and with initial conditions (3), very small
migration rate (relative to selection) is sufficient to move the
whole system to the higher peak. This conclusion is in accord
with that one of Crow et al. (1990), Barton (1992), Kondrashov
(1992), and Phillips (1993).

MULTIDEME MODELS

As was argued above, models with only two demes are
inappropriate for analyzing the third phase of the shifting-
balance theory. In what follows, I shall consider different
networks of demes linked by migration. As before, I shall
assume that initially one of the demes (deme 0) is fixed for
allele A, whereas all other demes are fixed for allele a. What
will happen as migration starts to interact with selection?
There are three possible outcomes. First, the fitter peak can
take over and spread over the whole system. Second, there
can be a balance between selection and migration such that
deme O will stay at a state close to the fixation of allele A,
whereas remaining demes will stay at states close to the fix-
ation of allele a. These two outcomes occurred in the two-
deme models considered above. With many demes, however,
it is also possible that migration from other demes will over-
come selection at deme 0 and move the whole system back
to the lower peak. What eventually happens depends on the
parameters of the model and, equally 1mp0rtant1y, on the
configuration of demes.

Before proceeding with a description of spemﬁc models
and results, three observations that are common to these mul-
tideme models should be mentioned. The first is that if the
new peak takes over, it happens in the form of a traveling
wave of alleles. The second is that in general it takes a very
short time (fewer than 100 generations) to approach very
closely the appropriate asymptotic solution (that is, the trav-
eling wave of alleles, the cline, or the monomorphic equi-

1037

librium corresponding to the old peak). The third is that the
exact number of demes in the network does not seem to be
very important provided it is not too small. The second and
the third observations greatly simplify numerical analysis.

One-Dimensional Stepping-Stone Models

I start with a network of linearly arranged demes with
migration only between nearest neighbors (at the rate m/2),
that is, the one-dimensional stepping-stone model. I shall
consider two different initial configurations of demes.

Deme 0 at the Border.—If the fitter deme happens to be
at the border of a species range, the allele frequency dynamics
are described by (2) with

(7A)
(7B)

Apy = (p1 — po)2,

1= (pic1 + pici — 2pD12, i=12,....

These equations imply that the deme at the border receives
migrants only from one neighbor, whereas other demes re-
ceive migrants from two neighbors with the rate m/2 from
each. Figure 1B shows areas of parameter space determined
numerically that correspond to the three possible outcomes
of the dynamics. Two points concerning this figure are in-
teresting. The first is that the higher peak takes over only for
much more restricted parameter combinations (compare with
Fig. 1A). The second point is that this never happens if P,
which characterizes the relative dominance of one peak over
another, is greater than some critical value (about 0.42). The
latter observation means that for the system to move through
phase three, the higher peak must be sufficiently dominant
over the lower peak. For example, if relative fitnesses of
genotypes aa and aA are 1.0 and 0.9, respectively, relative
fitness of genotype AA must be larger than 1.04. This is in
contrast to Barton (1992) who argued that even the less adap-
tive peak can easily take over.

Deme 0 Inside.—If the fitter deme happens to be inside the
network of demes, the allele frequency dynamics are de-
scribed by (2) with Ap, in the form (7B) for all demes, which
I specify using index i = 0, ¥1, ¥2, .... Figure 1C cor-
responds to this case. One can see that the area of parameter
combinations necessary for the third phase to take place
dwindles further. Under these conditions, the peak shift never
happens if P > 0.35 . For example, if relative fitnesses of
genotypes aa and aA are 1.0 and 0.9, respectively, the peak
shift never happens unless relative fitness of genotype AA
is larger than 1.09. Comparison of Figure 1B with Figure 1C
shows that phase three can be accomplished easier if it is
initiated in a peripheral deme (cf. Mayr 1963).

Two-Dimensional Stepping-Stone Models

Most species are found in two-dimensional habitats, not
one-dimensional habitats. As a simple example, let us con-
sider a network of demes arranged at the nodes of a square
lattice. Now one needs two indices, say i and j, to specify a
deme, i, j = 0, *1, ¥2, . ... Appropriate initial conditions
in this case are poy = 1 and p;; = 0 for all other demes.
Each deme inside this network has four neighbors and ex-
changes a proportion m/4 of its inhabitants with each of them.
The allele frequency dynamics are described by (2) with
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TaBLE 1. Relative fitnesses in the two-locus model.

BB Bb bb
AA 1+K 1-S 1-S
Aa 1-S 1-S 1-S
aa 1-S 1-S 1

API'J = u71‘*1\} + Pi+1y + Prj-1 + Pij+1 — 4[7,)/4,
i=0,%1, ¥2,.... (8)

Figure 1D presents parameter space both for this model and
for a network of demes arranged on a hexagonal lattice as
well. In the latter case, each deme inside the network has six
neighbors. One can see that the area of possible parameter
combinations necessary for the third phase dwindles further.
Now the peak shift never happens if 2 > 0.2 . For example,
if relative fitnesses of genotypes aa and aA are 1.0 and 0.9,
respectively, the peak shift never happens unless relative fit-
ness of genotype AA is larger than 1.30. Note also that dif-
ferences between the model with four neighbors and the mod-
el with six neighbors are not very large. Comparison of Figure
1D with Figure 1C shows that phase three can be accom-
plished easier in one-dimensional networks of demes than in
two-dimensional networks. Increasing the dimensionality of
the network from one to two dimensions increases the ease
with which a higher peak can be swamped by migration. A
similar observation was made by Nagylaki (1975) in ana-
lyzing models with spatially varying selection.

Two-Locus PEAK SHIFTS

The analysis in the preceding sections was restricted to the
single-locus case. If there are several loci underlying fitness,
then recombination will destroy adaptive combinations of
genes and may make the third phase of the shifting-balance
more difficult. Crow et al. (1990) and Phillips (1993) con-
cluded that this is not the case, but their studies were limited
to a two-deme case and some specific fitness schemes. What
can happen in other situations? To get some insight into this
question, I consider a simple two-locus model. I assume that
there are two diallelic loci with alleles A and a at the first
locus and alleles B and b at the second locus. Let r be the
recombination rate (0 = r = 0.5 with r = 0 if there is no
recombination, and » = 0.5 if the loci are unlinked). The
fitness of genotype AABB is 1 + K, the fitness of genotype
aabb is 1, whereas all other genotypes have reduced fitness
1 —§ K, S > 0 (see Table 1). In principle, there are many
different ways to assign fitnesses to ‘‘intermediate’’ geno-
types (see Crow et al. 1990; Phillips, 1993). The reason the
form presented in Table 1 was chosen is that it simplifies the
comparison with the one-locus case: with no recombination
and with initial conditions specified below this two-locus
model reduces to the one-locus model studied above.

Let index £ = 1, 2, 3, 4 correspond to the gametes AB,
Ab, aB and ab, respectively, and x; be the frequency of
gamete k. The rate of change of x; under selection and re-
combination in an isolated population (deme) is approxi-
mated by the standard equation

SERGEY GAVRILETS

dx, k

Xk k=1,2,34 9
o )

= (W — W)x; + waug,D,
where D = x;x4 — X,x3 is the standard linkage disequilibrium,
and wy,p, is the fitness of a heterozygote at both loci (for
fitnesses as in Table 1, wy,p, = 1 — S). w is the mean fitness
of the population, and wy is the induced fitness of gamete k
(for example, wy = Waapp X1 + Waapy X2 + Waapp X3 T Waanp
x4). In (9), the sign is minus for i=1 and 4 and is plus for ¢
= 2 or 3.

Let us consider a network of demes, each of which, in
general, exchanges a proportion m of its inhabitants with
neighboring demes in each generation. Let x;; be the fre-
quency of gamete k in deme i. I shall assume that initially
one of the demes (deme 0) is fixed for gamete AB, whereas
all other demes are fixed for gamete ab:

x.40) =1, if i =0, x4,0) =1, if i # 0. (10)

This model has an additional parameter, the recombination
rate r. In the figures below, I shall use the rate of recombi-
nation relative to the strength of selection, R = r/4s. With
absolute linkage, that is, if R = 0, and with initial conditions
(10), there are only two types of gametes, AB and ab, and
the system is equivalent to the one-locus two-allele system
analyzed in the previous section. The latter can be used as a
reference point to evaluate the effects of recombination. Fig-
ure 2A presents parameter space for a one-dimensional step-
ping-stone model in which deme O is at the border of the
network of demes. One can see that recombination reduces
the possibility of phase three significantly. Figure 2B presents
parameter space for a two-dimensional network of demes
located at the nodes of a hexagonal lattices in which deme
0 is inside the network of demes. For R = 1 or R = 10, this
figure looks similar to Figure 1A: there are only two different
regions. As in Figure 1A the smallest region corresponds to
migration-selection balance. However, in the area above the
corresponding line the whole systems moves back to the low-
er peak. This means that independently of P if R = 1 or R
= 10, the takeover of the higher peak never happens.

In general, the results of this and preceding sections show
that the optimism of the previous authors about the possibility
of the third phase of the shifting-balance is unjustified. The
third phase can happen only under much more restricted con-
ditions than previous studies lead one to believe. The models
used above, however, do not use Wright’s idea about excess
emigration from the fitter demes. Wright imagined that an
increase in fitness of a deme results in increasing the number
of individuals within this deme that, in turn, results in in-
creasing the emigration from the fitter deme. Excess emi-
gration from the fitter deme should be more favorable for the
third phase of the shifting-balance theory. In the next section,
I use a simple model of density-dependent selection to eval-
uate how strong this effect could be.

PEAK SHIFTS UNDER DENSITY DEPENDENT SELECTION

In this section, I consider a simple one-locus two-allele
model of weak density-dependent selection acting on a pop-
ulation with overlapping generations. (For reviews of models
of density-dependent selection see Roughgarden 1979; Ginz-
burg 1983.) I assume that fitness depends both on genotype
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Fic. 2. Regions in parameter space (ml4s,P) corresponding to the different outcomes of the peak competition in the two-locus models.
(A) One dimensional stepping-stone models with the fitter deme at the border of the network of demes. (B) Two-dimensional stepping-
stone models with six nearest neighbors with the fitter deme inside the network of demes. The cases of R = 0, R =1, and R = 10 are
described using solid, dashed, and dashed-dotted lines, respectively. In the one-dimensional stepping-stone models three possible outcomes

are possible. In the two dimensional stepping-stone models for R =

1 and R = 10 only two outcomes are possible: both peaks coexist

(in the area-adjacent to the x-axes) or the old peak takes over (in the remaining part of parameter space).

and on the population size, N. The dynamics of the frequency
of allele A and the population size in a single population are
approximated by the standard system of differential equations

d]

L= pouy = ), (11A)
dN

= = @N, B
- N (11B)

where w, is the induced (Malthusian) fitness of allele A, and
w is the mean (Malthusian) fitness of the population (Fisher
1930). I assume that Malthusian fitness decreases linearly
with increasing in the population size N (see Table 2 where
all as and Bs are assumed to be positive). The dynamics of
this system are well understood (Roughgarden 1979; Ginz-
burg 1983). The population always evolves to an equilibrium
with a finite population size. An initially monomorphic pop-
ulation grows according to the logistic curve and equilibrates
at a population size equal to the corresponding ‘‘carrying
capacity”” K = o/B. For example, a population monomorphic
for allele a reaches a stable population size K,, = 0;,/Baa-
The outcome of the evolution of an initially polymorphic
population depends on the relation among “‘carrying capac-
ities” Ks. If K,, > K,,, Ku4, the population evolves to a
stable polymorphic state. If K44 > Ky, > K, 01 Kyp < Kyg
< K,,, the population evolves to the fixation of allele A or

aar

TABLE 2. Malthusian fitnesses in the model of density-dependent
selection.

Genotype Fitness
AA ags — BaaN
Aa Qaq BAaN
aa aaa aa

a, respectively. If the heterozygote has the lowest “‘carrying
capacity,” that is, if Ky, < K, Kaa, the system has two
stable equilibria, and the eventual outcome depends on initial
conditions. At one equilibrium, allele A is fixed and the pop-
ulation size is K44. At the other equilibrium, allele a is fixed
and the population size is K,,. The last situation represents
a possible candidate for analyzing the third phase of the shift-
ing-balance theory.

To simplify the analysis, I shall assume that Bss = Bas =
B.. = B. Expressing the population size in the units of K,
that is, using a new variable, normalized population size n
= N/K,,, one can rewrite (11) as

d _
L= £ = @201 ~ p)p — P (124)
dn -
:1—1 = g(n) = (ay)(1 + 2sp(p — 2P) — n)n, (12B)
where
25 = (Kap — 2Kpq + KooK
and

}3 = (Kaa - KAa)/(KAA - 2KAa + Kaa)‘

Note that the right-hand side of (12A) is similar to that one
in Equation (1). As before, parameter P characterizes the
relative advantage of one peak over another: if initially p <
P, then the population evolves to the fixation of allele a and
the population size K,,, and if initially p > P, the population
evolves to the fixation of allele A and the population size
KAA.

In a network of demes connected by migration, the rate of
change of the frequency of allele A and of the normalized
population size in deme i are
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models with six nearest neighbors with the fitter deme inside the network of demes. '

dp;
= F(p) + m Ap, (13A)
d .
—d% = g(n) + m An,. (13B)

Here m is a (constant) probability that an individual from a
“typical”” deme leaves its deme. Ap; and An; are related to
the pattern of flows of genes and individuals among demes
and depend on the topology of the network. The formulae
for An; are standard. For example, in the case of two demes

(14)

that is, this is just the difference of the normalized population
sizes. The terms Ap; are more complicated. In the case of
two demes

Any = ny — ny, An, = nyg — ny,

Apo = (1 = p) = Api=(po—pD2 (15

o n
(Svirezhev and Passekov 1990, ch. 7). In general, the con-
tribution of migration between demes i and j into Ap; is pro-
portional to (p; — p;) ny/n;. Note that if the sizes of both
populations are equal, that is, n; = ng, then (15) reduces to
(6). In general, however, the ratio of sizes is different from
one and changes in time. The system (13-15) of two demes
linked by migration was analyzed in (Svirezhev and Passekov
1990, ch. 7). In the model described by equations (12-13),
a deme that has higher fitness has a larger size and sends
more migrants as well.

In presenting numerical results, I shall use three parame-
ters: s, the relative advantage of the higher peak, P, and the
parameter & = m/(4sa,) that is equivalent to € in the models
considered in the previous sections. Figure 3 compares
regions in parameter space corresponding to the different
outcomes of the dynamics in models with density-dependent
selection (and, hence, with differential migration) with those
in the case of density-independent selection where migration
was uniform. The latter are exactly the same as those found

in the section titled “‘Single Locus Peak Shift’’ assuming that
all demes have the same constant size. Figure 3A describes
a one-dimensional stepping stone model. Similar compari-
sons are done in Figure 3B for a two-dimensional stepping
stone model. One can see that differential migration does not
introduce much difference.

DiscussioN AND CONCLUSION

Altogether the results described here seem to be consistent
with Haldane’s (1959) intuition about the difficulties with
phase three. These results show that the third phase of the
shifting-balance theory can proceed only under much more
restricted conditions than the previous studies (Crow et al.
1990; Barton 1992; Kondrashov 1992; Phillips 1993) sug-
gested. Migration should be neither too strong no too weak
relative to selection for this phase to proceed. The higher
peak should be sufficiently dominant over the lower peak.
This is in contrast to Barton (1992) who argued that a very
low migration rate can spread the new gene combination even
if it is deleterious. Contrary to what Crow et al. (1990) and
Phillips (1993) concluded, recombination can greatly reduce
the plausibility of this phase. In two-dimensional models,
recombination can completely preclude peak shifts. Excess
emigration that results from excess population growth does
facilitate phase three but not significantly (cf, Barton 1992,
p. 555). A very important determinant of the ultimate out-
come of the competition between different peaks is the to-
pological structure of the network of demes. Analysis given
in this paper demonstrates extreme dependence of the out-
come of the peak competition on the number of neighboring
demes. This property is shared by stochastic models of peak
shifts (e.g., Lande 1985a,b, 1986; Rouhani and Barton 1987,
1993; Barton and Rouhani 1991, 1993) in which the outcome
of the peak competition strongly depends on the neighbor-
hood size. The importance of the topological structure of the
network of demes reflects the power of gene flow over se-
lection (Barton 1992, p. 556). Peak shifts in two-dimensional
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networks of demes are more difficult than in one-dimensional
networks. Increasing the dimensionality of the network from
one to two dimensions increases the ease with which a higher
peak can be swamped by migration. A similar observation
was made by Nagylaki (1975) in analyzing models with spa-
tially varying selection. Phase three can be accomplished
easiest if it is initiated in one of the peripheral demes (cf,
Mayr 1963) that presumably have fewer number of neigh-
boring demes.
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