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ABSTRACT 
We  show that in polymorphic populations many polygenic traits pleiotropically related  to fitness 

are expected to be under  apparent “stabilizing selection” independently of the real selection acting 
on  the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium 
determined by selection and  the nonadditive  contributions of the loci to  the trait value either  are 
absent, or are  random  and  independent of those to fitness. Stabilizing selection is also observed if the 
polygenic system is at  an equilibrium determined by a balance between selection and mutation (or 
migration) when both  additive and nonadditive  contributions of the loci to  the trait value are random 
and  independent of those to fitness. We also compare  different viability models that can maintain 
genetic variability at many  loci  with respect to  their ability to  account  for the strong stabilizing selection 
on  an additive  trait.  Let V,,, be  the genetic variance supplied by mutation (or migration) each 
generation, V, be  the genotypic variance maintained in the population, and n be the  number of the 
loci influencing fitness. We demonstrate  that in mutation (migration)-selection balance models the 
strength of apparent stabilizing selection is order V,,,/V,. In  the overdominant model and in the 
symmetric viability model the  strength of apparent stabilizing selection is approximately 1/(2n)  that 
of total selection on the whole phenotype. We  show that  a selection system that involves  pairwise 
additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic 
variance in fitness (approximately 1/(2n)  times) than an equivalent selection system that involves 
overdominance. We  show that, in the epistatic model, the  apparent stabilizing selection on an additive 
trait can be as strong as the total selection on  the whole phenotype. 

B O T H  in nature  and in artificial selection experi- 
ments individuals with a  phenotype  that  deviates 

from  the mean prove  to have reduced fitness. Two 
extreme explanations of this observation have been 
proposed (ROBERTSON 1967). According to  the first, 
this is evidence of “stabilizing” selection working di- 
rectly on quantitative  traits. In keeping with this inter- 
pretation, most mathematical models describing the 
evolution of quantitative  traits  have  included stabiliz- 
ing selection as a basic part; i .e. ,  fitness takes the  form 
of a  quadratic or Gaussian function of the phenotypic 
value (e.g., LANDE 1975,  1976; GIMELFARB 1986, 
1989; NAGYLAKI 1989; HASTINGS and HOM 1990; 
TURELLI and BARTON 1990; BARTON and TURELLI, 
1991). Practical measures of the  mode  and intensity 
of natural selection also are based on  the beliefs that 
direct stabilizing selection acts on most quantitative 
traits  and  that  quantitative  traits are decisive in estab- 
lishing fitness (LANDE and ARNOLD 1983; ARNOLD 
and WADE 1984a,b; ENDLER 1986; MITCHELL-OLDS 
and SHAW 1987; SCHLUTER 1988). 
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This  “direct”  explanation has, however, some weak 
points. First, the negative correlation between fitness 
and  the  squared deviation of the trait value from the 
mean does  not necessarily imply that  an individual has 
reduced fitness just because its quantitative  trait  de- 
viates from  the  “optimum.” The difference between 
statistical and functional  relations in the context of 
measuring  natural selection acting  on  quantitative 
traits was recently emphasized by WADE and KALISZ 
(1 990). Further, observed relationships between fit- 
ness and a  quantitative  trait may be rather misleading. 
For  example, one may observe “stabilizing” selection 
on a  trait  that is neutral by definition,  provided there 
are certain  pleiotropic  relations between this trait  and 
fitness (ROBERTSON 1956; BARTON 1990; KEIGHTLEY 
and HILL 1990). Another  example is a model in  which 
natural selection moves the mean of a  quantitative 
trait away from  the observed  optimum (ROBERTSON 
1967). The view that  quantitative variation can be 
understood in terms of direct stabilizing selection on 
the  traits also can  be criticized using load arguments, 
ideas about widespread pleiotropy, and  the results of 
selection experiments (ROBERTSON 1967; FALCONER 
1989; BARTON 1990; KEICHTLEY and HILL 1990). 
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An alternative extreme view  is that  the  observed 
variability of quantitative  traits is a side effect of 
polymorphism maintained  for some other reasons, 
and that  observed  differences in fitness of individuals 
with different values of a  quantitative  trait have noth- 
ing  to do with selection on  that  trait. ROBERTSON 
(1  956)  proposed  a model in which genetic variation 
was maintained by overdominance at each of n loci. 
The loci also control pleiotropically an  additive  neu- 
tral  quantitative  trait  that will be under  apparent 
stabilizing selection provided the population is at a 
polymorphic equilibrium. This balancing selection 
model was reanalyzed by BARTON (1990), who also 
considered  a similar model in which genetic variability 
was maintained by mutation [see also KEIGHTLEY and 
HILL (1 990)]. 

In this paper, we consider  a similar class of pleio- 
tropic models. First, we show that  for any dependence 
of fitness on genotype, one expects to observe “stabi- 
lizing selection” on  an additive polygenic trait  that is 
pleiotropically related to fitness. One set of conditions 
is that  the  genetic system is at a stable polymorphic 
equilibrium  determined by selection while (1) the 
nonadditive ( i e . ,  dominant  and epistatic) contribu- 
tions of  loci to  the  trait value are  absent,  or (2) the 
nonadditive  contributions of  loci to  the trait value are 
random  and  independent of those to fitness. Stabiliz- 
ing selection also is expected  to be observed if the 
polygenic system is at  an equilibrium  determined by 
a balance between selection and mutation (or migra- 
tion), and  both  additive  and  nonadditive  contributions 
of the loci to  the  trait value are random  and  inde- 
pendent of those to fitness. On  the  other  hand,  one 
expects to observe  directional selection on  the  trait if 
the genetic system is at a  stable  polymorphic equilib- 
rium and  the  contributions of the loci to  the  trait 
value are related to  the contributions of the loci to 
fitness. Apparent  disruptive selection may arise, if, for 
example,  conditions (1 )  and/or (2) are satisfied, but 
the population is at  an unstable polymorphic equilib- 
rium. The above conclusions are based on  an  approx- 
imation of the  apparent fitness function. This  approx- 
imation assumes that  the  number of loci underlying 
the trait is large and  that linkage disequilibrium can 
be neglected, while the  “real” fitness function and  the 
distribution of the  trait can be  arbitrary. 

In  natural  populations,  both abundant polygenic 
variation and  strong stabilizing selection are  found. 
This forms rather a conundrum, as stabilizing selec- 
tion  should rapidly eliminate that variation. As a  con- 
sequence,  the analysis  of possible mechanisms of the 
maintenance of polygenic variability under stabilizing 
selection was stimulated (e .g . ,  BULMER 1972,  1973; 
LANDE  1975; GILLESPIE and TURELLI 1989; GIMEL- 
FARB 1986,  1989; HASTINGS and HOM 1990; NAGY- 
LAKI 1989; ZHIVOTOVSKY and GAVRILETS 1992). 

However, abundant  data  on  reduced fitness of indi- 
viduals with extreme phenotypes (e .g . ,  ENDLER 1986) 
cannot  be  interpreted exclusively  as evidence of eco- 
logical stabilizing selection. The problem:  “How can 
quantitative variability be maintained under  strong 
stabilizing selection?” has been intensively analyzed 
during  the last 15 years, but if  we accept  that stabiliz- 
ing selection is only or predominantly “apparent,” 
then this problem will not  be of much importance. 
The questions  that become important now are “How 
can polygenic variability be  maintained under selec- 
tion,  and how can this lead to  strong  apparent stabi- 
lizing selection?” 

BARTON  (1  990)  formulated this problem and made 
an  attempt  to solve it. He considered two models with 
additive fitness. In the first, polygenic variability was 
maintained by recurrent mutation  to  deleterious al- 
leles. In  the second,  proposed by ROBERTSON (1956), 
polygenic variability was maintained by overdomi- 
nance at each locus. In  both models the loci  also 
control  a  neutral  additive  quantitative  trait which is 
under  apparent stabilizing selection. The general con- 
clusion of  his analysis was, however,  that “neither 
mutation/selection balance nor balancing selection 
alone can easily account  for  both  the high heritability 
and  the  strong stabilizing selection which are com- 
monly observed”  (p.  779). The mutation-selection 
model also was analyzed by KEIGHTLEY and  HILL 
(1  990) using numerical simulations. The conclusion 
of these authors was that  the model “can be made  to 
fit the observations,  but it is easy to  construct examples 
where it does not, particularly in  which predicted 
stabilizing selection is too weak” (p.  99). 

In the second part of this paper, we apply our results 
on  apparent fitness functions  to  a  general  mutation 
(or migration)-selection balance model and  to  three 
specific  viability models. These  are:  the overdominant 
model (ROBERTSON 1956; BARTON 1990),  a symmetric 
model (KARLIN and  AVNI  1982)  and  a model with 
additive by additive epistatic interactions between 
pairs of  loci (GAVRILETS  1993; ZHIVOTOVSKY and 
GAVRILETS 1992). For all these models, the existence 
of stable multilocus polymorphism has been  proven; 
therefore, they represent  a possible solution to  the 
first part of the  problem. We  shall consider  the second 
part of the  problem, i e . ,  whether it is possible to 
generate  strong  apparent stabilizing selection on 
quantitative  traits in each of these four models. Our 
results show that epistasis may  solve the problem 
stated by BARTON. The main advantage of the epis- 
tatic models is the possibility  of the maintenance  of 
high levels  of polymorphism while the genetic load 
and genetic variance in fitness associated with this 
polymorphism remain very  low. 

THE FORM OF APPARENT SELECTION  ON AN 
ADDITIVE  POLYGENIC TRAIT 

T o  characterize  apparent selection on a polygenic 
trait, ROBERTSON (1956)  considered the fitness con- 
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ditioned on  the  trait value, while BARTON ( 1  990) and 
KEIGHTLEY and HILL  (1  990) calculated the covariance 
of fitness with the  squared value of  the  trait. In this 
section we shall use ROBERTSON’S approach as more 
informative. 

Consider  a diploid monoecious randomly  mating 
population with distinct nonoverlapping  generations. 
We assume viability selection; let zi, be the mean fitness 
of the population.  Let there be n loci with two alleles 
each: A, and a, (i = 1,. . . ,n), and let pi and qi = 1 - pi 

be the frequencies of allele A, and a, respectively. 
Throughout  the  paper we shall use the indicator 
variables Z, (I:) which equal to  1, if the allele at  the  ith 
locus of the paternal  (maternal)  gamete is A;, and 0, if 
this allele is ai.  Assume that linkage disequilibrium can 
be  neglected. This assumption is reasonable if, for 
example, selection is much weaker than  recombina- 
tion. 

Each individual is characterized by the value of an 
additive  quantitative  trait, X .  Letf(x) be the distribu- 
tion of X in the population with mean E ( x ]  = X and 
variance var{x) = P .  Denote by (62); and (6P)i the 
average effects of allele A, on the mean value X and 
phenotypic variance P .  Thus, 

(ai); = E { x  I l i  = 1 ] - 2, ( 1 4  
(6P)i = P - varix1 li  = l ) ,  

where we use the notions of the conditional  mean and 
conditional variance. Denote by (SS),, and (6P);i the 
corresponding effects of the one-locus marginal  gen- 
otype A,Ai 

(6X)i; = E ( x (  Z, = 1: = 1) - X, (lb) 
(6P);i = P - var(x 11, = 1: = 11. 

Without loss of generality, we shall assume that X = 0. 
Note that if there is no  dominance, (B2);i = 2(6f),, 
(8P)ii = 2(6P),. We shall assume that  the  trait is con- 
trolled by a  large number of loci with small effects, so 
that all (Si), and (62);; values are small and all (6P); and 
(6P)ii values are second order in  (62)-values. 

Now let us assume that  one has measurements of 
the fitnesses of different individuals with the same 
phenotype X = x. According to general  practice [e.g., 
SCHLUTER (1 988)]  the  corresponding mean fitness, 
E ( w J X  = x), will be  considered as the  “real” fitness 
of phenotype x, the deviations of the fitnesses 
from E(w I X = x) as  a  random  “noise,” and  the function 
w ( x )  * E ( w  I X = x) as the phenotypic fitness function. 
In the Appendix we show that  for  arbitrary  “real” 
fitness function, w,  and  for  arbitrary phenotypic dis- 
tribution, f ( x ) ,  the  “apparent” fitness function, w(x) ,  
can  be  approximated as 

Here f ’ ( x )  = df(x)/dx, f ( x )  = d2f(x)/dx2, and  the 
partial derivatives of the mean fitness are evaluated at 
the point ( p , ,  . . . , p J ;  the  error is third  order in (ai)- 
values. 

First note  that  both  terms in (2a) and  (2b)  that  are 
first order in (hi) are proportional tof’(x)/f(x). Since 
the covariances cov((J”(x)/f(x)), x) = -1 and 
cov(~(x)/f(x)), x*) = 0, we can interpret  the  corre- 
sponding sums in (2) as components of directional 
selection in the  apparent fitness function  (LANDE and 
ARNOLD  1983).  If,  for  example,  the  phenotypic dis- 
tribution is normal, 

f’w x - 2 

f ( 4  P ’  
- -- 

and  the first order terms give linear dependence of 
fitness on phenotype. The terms in (2a, 2c, 2d)  that 
are second order  are proportional to cf”)(x))/(f(x)). 
Since the covariances cov(cf”(x))/(f(x)), x) = 0 and 
cov((f”(x))/(f(x)), x’) = 2, we can interpret  the  corre- 
sponding sums in (2) as components of stabilizing 
(disruptive) selection in the  apparent fitness function 
provided they are negative (positive) (LANDE  and  AR- 
NOLD, 1983).  For  example,  iff@) is normal,  then 

f”0 = - 1 + (x - 2)’ 
f ( 4  P P 2  . 

Thus,  the second order terms give a  quadratic  de- 
pendence of w(.) on x. In general, the directional 
component of apparent selection (which is first order) 
dominates the components of stabilizing and disrup- 
tive selection (which are second order). Below we 
consider how the relative order of these  components 
depends  on  the  genetic  structure of the  population. 

Additive trait without dominance: Assume that  the 
quantitative  trait is additive  both between and within 
loci. Such a  trait can be  described as 

x = Z ai(Z, + 1: - 1)  + e ,  (3) 
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where ai is the additive  contribution of the i-th locus, 
and e stands  for  random  microenvironmental devia- 
tion. In this case, using the expressions for  the average 
effects (1) given in the Appendix, the  apparent fitness 
function (2) can be  rewritten as 

Let us assume now that  the genetic system is at a 
stable polymorphic equilibrium  determined by selec- 
tion. If linkage disequilibrium can be neglected, the 
dynamics of the allele frequencies under selection are 
approximated by the general  relation Ap, = ( p ; q , / 2 )  
(alnrir/t3pi) [e.g., WRIGHT (1 935)  and BARTON and TUR- 
ELLI (1987)l. At a  polymorphic  equilibrium, &&lap, = 
0 ,  so that  the  apparent fitness function becomes 

At a stable equilibrium, the  matrix of second order 
derivatives d2G/dp;dpj is negative definite, therefore 
the  term in brackets is negative. We observe “pure” 
stabilizing selection on  an additive  trait in an equilib- 
rium  population, and  for a normally distributed trait, 
quadratic stabilizing selection. Note  that if the  popu- 
lation is at  an unstable equilibrium  where the matrix 
of second order derivatives a’rir/dp,dpj is positive defi- 
nite,  then we would observe “pure” disruptive selec- 
tion. 

In the situation just considered, the first order  term 
in (4a)  disappeared due  to  the assumption that  the 
genetic system was at a stable polymorphic  equilibrium 
determined by selection. Another possibility is to as- 
sume  that the contributions  of the loci to  the  trait, a;, 
are drawn  from  a probability distribution which is 
independent of fitness and  that  the ai have a mean 
value of zero. A natural  interpretation of such a 
situation is that  the  trait is “neutral.”  In this case the 
terms in (4a)  proportional  tof’(x)/f(x) will not domi- 
nate  the  terms  proportional  tof”(x)/f(x). We expect 
to observe “stabilizing” (or  “disruptive”) selection on 
the trait in a  population  that is not necessarily at  an 
equilibrium  determined by selection, but,  for exam- 
ple, at  an  equilibrium  determined by a balance of 
mutation  (or  migration) and selection. Let the poly- 
genic system be at a polymorphic equilibrium  where 
a low  level  of variability is maintained by mutation or 
migration. Assume, without loss  of generality, that it 
is allele A, that has a low frequency, say order t << 1. 
In this case  all p,qi values will be order t .  Therefore 

the sum in (4d), which is now second order in t ,  can 
be neglected, and  the  apparent fitness function is 
described by the  terms in (4a) which are first order in 
t: 

At a polymorphic equilibrium  where selection tends 
to eliminate the allele having low frequency ( i e .  where 
&3/dpi .e 0 and p i  << q,), (&?lapi) (4, - p i )  .e 0, and, 
hence,  the  terms is (6) that  are  proportional  tof”(x)/ 
f (x) correspond  to “stabilizing” selection. Therefore, 
we expect to observe “stabilizing” selection on a  “neu- 
tral”  trait in a  population  that is at  an  equilibrium 
determined by a balance of mutation  (or  migration) 
and selection. 

THE STRENGTH OF APPARENT SELECTION O N  
AN ADDITIVE POLYGENIC TRAIT 

The results from  the  preceding section show that 
one can  expect  to  observe stabilizing selection in  many 
situations. However,  nothing was said about  the 
strength of this apparent selection. In  the following 
sections, we shall  use expression (4) for calculating 
strength of apparent stabilizing selection in different 
models. The component of relative apparent fitness 
w(x)/zi~ that stands  for stabilizing selection can be  re- 
written as -sP2 (f”(x)/’(x)), or, if  we assume that  the 
phenotypic  distributionf(x) is approximately  normal, 
as ”s(x - X ) 2 ,  where  parameter s > 0 depends  on  the 
model under consideration. The parameter s is a 
practical measure of the intensity of stabilizing selec- 
tion (LANDE and ARNOLD  1983).  Alternative  dimen- 
sionless measures are  the genetic load, Lapp, and  the 
genetic variance in the relative fitness, var(w/W)app, 
associated with apparent stabilizing selection. In  the 
case  of a  normal  distribution of x, these values are 
approximated by 

L~~~ = S P ,  var(w/G)app = 2 s2P2.  (7) 

In  the following sections, we shall calculate these 
characteristics of the  apparent fitness function in dif- 
ferent models. 

Mutation (migration)-selection balance  models 

Maintenance of variability: Let us assume that  the 
polygenic system is at a polymorphic equilibrium 
where  a low  level  of variability is maintained by mu- 
tation or migration. In this case, the dynamics of the 
allele frequencies  near the equilibrium are approxi- 
mated by 
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where Ap? is the  change in p ,  caused by mutation or 
migration, i = 1,. . ., n. If variability is maintained by 
recurrent  mutation  that occurs at  an equal rate in 
each  direction, Ap? = &(pi - qi),  where pi << 1 is the 
mutation  rate at  the  ith locus (e.g., BARTON 1986). If 
variability is maintained by gene flow from  another 
"source" population, Ap? = p ( p ,  - where p << 1 
is the migration rate  and p;,o is the frequency of allele 
Ai in the "source" population.  Let us assume without 
loss of generality that it is allele Ai that has a low 
frequency. Multiplying (8) by 2a? and summing  over 
all  loci controlling the  trait, we find  that at  an equilib- 
rium (with Ap, = 0) the genotypic variance is approx- 
imately 

v, = V J L ,  (9) 

where V ,  = Cxp;2a?(qi - pi)  s Cxpi2a? for  the muta- 
tion-selection balance case, and V ,  = CXp2a?(p,,o - pi)  

C,pSa?pi,o for  the migration-selection balance case. 
Here  the sum Ex is over n, loci influencing  both fitness 
and trait (n, d n). In both cases, V,  is the new genetic 
variance suEplied in the population  each  generation. 
Parameter L is the mean value of Li = -(l/q)dlnzi)/dpi 
weighted according  to  the genotypic variance contrib- 
uted by that  gene, i = CS;2a?p;q;/Cx2a?p;q;. Param- 
eter i can  be interpreted as the mean intensity of 
selection against the  rare allele having pleiotropic 
effect on  the  trait. Expression (9) generalizes the 
formula  for  the  genetic  variance in an additive  trait 
maintained under  direct gaussian (and  quadratic) se- 
lection by mutation (BULMER 1972)  for  the case of 
arbitrary fitness functions and  for  the case of migra- 
tion-selection balance. The question of whether it is 
possible to maintain  high levels of genetic variability 
by mutation  remains  controversial (BARTON 1990; 
KEICHTLEY and HILL 1990). 

Apparent stabilizing selection: For equilibria with 
a low level of variability, the  apparent fitness function 
is approximated by expression (6). In this case the 
"intensity" of stabilizing selection is 

Assuming approximate  normality of the phenotypic 
distribution,  the  apparent  load  and  the  genetic vari- 
ance in relative apparent fitness (7)  become 

L L 

Note  that Vg/P is the heritability. Thus,  the  apparent 
genetic load in this model is maximum half the  inten- 
sity of selection against the  rare allele having pleio- 
tropic effect on  thepait, L. As follows from expression 
(9), the  parameter L equals the  ratio  of  the new genetic 
variance supplied to  the population by mutation (mi- 
gration) in one  generation to that  one maintained in 

the population, i = V,/V,. The typical experimental 
estimate of VJV, is about lo-' [e.g., LYNCH (1988)l. 
This makes it impossible to explain any strong stabi- 
lizing selection observed in terms of this mutation- 
selection balance model. For more discussion of the 
level of genetic variability and intensity of apparent 
stabilizing selection in similar mutation-selection bal- 
ance models, see BARTON (1990), KEIGHTLEY and 
HILL (1 990), and KONDRASHOV and TURELLI (1  992). 

Overdominant  viability  model 
Let viability be  characterized by dominance 

"within" loci. Then fitness can be described as 
n 

w = m + I: [ai(& + I:) + 2b;Z,Z:]. (1 2 )  

Maintenance of variability: If ai > 0,  ai + 2bi < 0 
(i.e., if there is overdominance at each locus), then  an 
equilibrium with allele frequencies pi" = -a;/(2bi) is 
globally stable. At this equilibrium, the mean fitness 
of the population, the segregation load associated with 
polymorphism, and  the genetic variance in relative 
fitness are 

zlr = p + C a g : ,  (1 3 4  

L = (G/w,,)C - 2p:q:bi/G 
- 

s Li = nL, (13b) 

var(w/zSr) = C4(P?q:)'b'/~' 

= nE-2; (1 3 4  

respectively. Here L, = -2b;p?qT/G is the segregation 
load at  the  ith locus (provided that  the overall load is 
not  large, ie., G/w,, s 1); Land 2' are  the  arithmetic 
means of L, and L f .  

Apparent stabilizing selection: Assume that  the 
genetic system is at a  polymorphic  equilibrium. In this 
case, dG/dpi = 0,  d'zi)/ap,dp, = 0,  i # j ,  d2zi)/dp? = 4bi, 
and "intensity" of stabilizing selection s can  for this 
overdominant model be  represented as 

sover = C x  (L;/2)Pa?plpiqi/P2 

= -b(b$q/G)V,/P' 

= (2/2)Vg/P2, (14) 

where i is the weighted mean  segregation load at a 
single locus, i.e., the mean value of L; = -2bipiqi/G, 
weighted according to the variance contributed by 
that  gene, L = CxLi2afp;q,/~,2a,?piqi. Again the sum 
X, is over  the n, loci influencing  both fitness and trait 
(n, d n). In this case, expressions (6) become 

1 
2 Lapp = - L(V,/P), var(w/G)app = 5 (i)2(Vg/f')2, (1  5) 

The expression for Lapp can also be  derived  from 
ROBERTSON'S (1956) estimates (see also BARTON 

1 
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(1  990)  for  an alternative  derivation). Obviously, ap- 
parent load and variance in fitness depend on  the real 
load and variance in fitness. Measures that  depend 
only on  the  structure of the pleiotropic model are  the 
ratios 

var(w/W),,,/var(w/W) = % [(L)'/IT'](V~/P)', (1 6) 
1 

where 1 and I?- are  the  arithmetic means of  L, and 
L:. Note  that these ratios  can  be interpreted as a part 
of the genetic load (or genetic variance in relative 
fitness) "explained" by apparent stabilizing selection. 
Right-hand sides of (16)  behave  approximately as 
( f in) .  It is widely supposed that  the  number of the 
loci influencing fitness is very large; therefore, it is 
impossible to explain any strong stabilizing selection 
observed in terms of this overdominant model. BAR- 
TON (1  990)  made  a similar conclusion. 

Symmetric  viability  models 
KARLIN and AVNI (198 1) analyzed a class of sym- 

metric viability models where fitness, w ,  depended  on 
the  proportion of heterozygous loci, h. In our nota- 
tion, this model can be  described as 

Maintenance of variability: In this model the cen- 
tral polymorphic equilibrium  (exhibiting  equal  fre- 
quencies for each gametotype) always exists and can 
be stable provided  function w(h) and  the recombina- 
tion rates satisfy certain  conditions (KARLIN and AVNI 
1981). The mean value and  the variance of h in the 
population are 

where the  latter expression assumes linkage equilib- 
rium. At the  central  equilibrium  where all allele fre- 
quencies equal one half, E = f i ,  var(h) = 1/(4n). The 
fact that  var(h) is small  if the  number of loci is large 
suggests that we can use a  linear  approximation w(h) 
r w(E) + (dw/dh)(h - F). This gives the mean fitness, 
the genetic  load, and  the genetic variance in relative 
fitness as 

Apparent stabilizing selection: T o  calculate the 
apparent fitness function we need to know the values 

of the second order partial derivatives d2z;l/dpidpj and 
d'W/dpI? at equilibrium.  Approximating these partial 
derivatives to  the leading order in l / n ,  we get the 
intensity of stabilizing selection 

(20) 

Accordingly, provided the phenotypic  distribution is 
normal,  the  apparent  genetic load and genetic vari- 
ance in fitness are approximated as 

1  1  1 dw(h) 
4 n G  dh Lapp = - 1 - - -1 (V,/P), 

var(w/W),, = - (- - -) (V,/P)'. (2 1) 
1 1  1 dw(h) ' 
8 nW  dh 

Calculating the ratios of the  apparent  to  the real 
values, we find that 

This shows that in the symmetric viability model, as 
in the  overdominant  model,  the  strength of apparent 
stabilizing selection on  an  additive  trait is approxi- 
mately 1/(2n) of the  strength of the overall selection 
on  the phenotype. The symmetric model also cannot 
explain observed  strong stabilizing selection. 

EPISTATIC  VIABILITY MODELS 

In all models just considered, we observe "stabiliz- 
ing selection" on  an additive  trait.  However,  none of 
them can account  for  high heritability and  strong 
stabilizing selection occurring simultaneously. This 
suggests that we need  a  more complex model. A 
possible candidate  for  the analysis is a viability model 
that accounts  for  additive,  dominant, and epistatic 
pairwise additive by additive effects (GAVRILETS 1993; 
ZHIVOTOVSKY and GAVRILETS 1 9 9 2 ) .  

Model  with  equivalent loci 

Let us consider the completely symmetric case 
where fitness is described by 

w = m + C a(& + 1 ; )  + 2bZil; :[ 1 
n + x ~ ( l i  + l [ ) ( l ;  + 1;) .  ( 2 3 )  

i#j 

Maintenance of variation: If a multilocus system is 
under viability selection (23),  and selection is much 
weaker than  recombination, there exists a single glob- 
ally stable  equilibrium with allele frequencies 
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U 

p i  = p *  = -2(b + 2c(n - 1))’ (24) 

provided a > 0, b < -a/2n, b/2 < G -(a + 2b)/ 
(4(n - 1)) (ZHIVOTOVSKY and GAVRILETS 1992).  At 
this equilibrium the mean fitness and  the genetic 
variance in fitness are 

W = p + nap*, 

var(w) = 4n(p*q*)‘[b2 + 2c2(n - l)].  (25) 

We do not  present  an expression for  the genetic  load, 
which is much more complex  than expressions (25) 
and takes different  forms  for  different  configurations 
of the parameters. 

It is interesting  to  compare  characteristics of this 
polymorphic  equilibrium with those of the overdom- 
inant  model.  For this reason, let us assume that  the 
parameters of the  overdominant  model  (for which we 
shall  use the subscript “over”)  and  the  parameters of 
the epistatic model are connected by the following 
equations: 

Clover = CL, aover = a, bover = b + 24n - 1)-  (26) 

Under these  conditions the equilibrium allele frequen- 
cies and  the equilibrium  mean fitness are equal in both 
models. Let us introduce  the  parameter w measuring 
the  “strength” of epistasis: 

6 = (1 - ~ ) b ~ , , , ,  2c(n - 1) = wbover. (27) 

If w = 0, we have exactly the  overdominant model 
with c = 0, and if w # 0, then  the sign of c is opposite 
to  that of w (since bo,,, < 0). Using (25,  27)  one can 
show that 

var(w)/var(w),,,, = (1 - 0)’ + w2/(2n - 2). (28) 

This is a  quadratic in w;  it is larger  than  one if w < 0 
(ie., if c > 0) with a  minimum at w = 1/(2n - 2). The 
condition for existence and stability of the polymor- 
phic equilibrium b < 2c imposes a  restriction on  the w 
values: w < 1 - l/n. As w tends to 1 - l/n,  the ratio 
of the variances in fitness tends to 1/(2n - 2) provided 
that  the  number of loci, n, is large. This means that 
in the epistatic model, the genetic  variance in fitness 
at equilibrium can be  approximately 2n times lower 
than in the  corresponding  overdominant  model.  In 
other words, epistasis can  maintain the same level of 
polymorphism as overdominance, while the overall 
genetic variance in fitness (genetic  load) associated 
with this polymorphism equals  approximately half the 
genetic variance in fitness (genetic  load) for a single 
locus in the  corresponding  overdominant  model.  It is 
interesting that this conclusion is valid only for nega- 
tive values of the epistatic parameter c. 

Apparent  phenotypic  selection: Let the  trait be 
additive,  without any microenvironmental  deviation: 

x = p + n(Z, + I(). n x  

where (Y is the locus contribution to the  trait. The 
number of loci affecting  both fitness and  the  trait, n,, 
is not necessary equal to  the  number of  loci affecting 
fitness, n. At a  polymorphic  equilibrium, the mean 
and variance for  the  quantitative  trait are X = p + 
2n,ap *, and V, = 2n,a2p * q  *. The mean fitness con- 
ditioned  on  the  trait value can now be calculated 
exactly (see the Appendix): 

+ t [a + 2bp + 4c(n - l)p]  (29b) 

* [ b  + 2(n, - l)c] 

where t = (x - X ) / q  is the normalized deviation of 
x from  the mean value X of the  trait. Expression (29) 
is exactly a  quadratic in x. The term  (29b) shall dom- 
inate if a + 2bp + 4c(n - 1)p # 0. This means that 
when the genetic system is not  at  equilibrium ( p ,  # 
p * ) ,  we will observe  “directional” selection. If the 
genetic system is at equilibrium,  then  term  (29b) dis- 
appears,  and we have apparent “stabilizing” selection 
on x. In this case the normalized  deviation of the mean 
value of the trait  from the observed  “optimum” 
(at which w ( x )  has its maximum) is (X - xopt)/fi 
= ( p  - q ) / w .  This tends to zero if n, is large. 

Note  that  the  “intensity” of stabilizing selection in 
this model can be approximated by 

sepi = = - [ b  + 2c(n, - l)](pq/W)/Vg, (30) 

and  that  the  apparent genetic load and  the  “apparent” 
genetic variance in fitness are approximately 

Lapp = - [ b  + 2(n, - l)clp*q*/W, 

var(w/G),,, = 2[(b + 2(n, - l)~)p*q*/W]~. (31) 

All these values increase with the  number of the 
pleiotropic loci, n,. From  (26) and  (31) it follows that 

where we again use the  parameter w measuring  the 
“strength” of epistasis (see Eq. 27). As w tends  to 
1 - l/n, this ratio  tends  to n,/n provided the  number 
of loci, n, is large. This means that  the  genetic variance 
in the  apparent fitness can be as large as the genetic 
variance in “real” fitness (if nx n). Again this conclu- 
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sion is  valid only for negative values of the epistasis 
parameter c .  

Asymmetric  model 

The completely symmetric model assumes in  im- 
plicit form  that the effects of alleles on fitness and  on 
the quantitative  trait are strongly  related;  resulting, 
in particular, in very strong  apparent selection. In this 
section we consider  a  nonsymmetric model without 
such a  restriction. Let fitness be  represented by 

w11, = m + [ai(& + I() + 2b,Z,Zi] 
n 

i 

n 

+ cy(Z1 + l o ( &  + I(). ( 3 3 )  
i#j 

The maintenance of variability: Let us define the 
(n X n)-matrix S with the components (S), j .  = Sy, i, j = 
1 , .  . ., n, where Sy  = 4cy (i # j ) ,  Sii = 2bi, and  the 
vector A with components (A)* = ai + C j S y ,  i = 1 , .  . . , 
n. The single equilibrium with n polymorphic allele 
frequencies p? = exists and is stable if for all 
components of the  vector +”A, 0 < (-S”A), < 1 ,  
and  the matrix S is negative definite (ZHIVOTOVSKY 
and GAVRILETS 1992). 

Apparent  phenotypic selection on an additive 
trait: In this model, (a;), = aiqi, (6P)i = a’piqi, d26/ 
dpidpj = 8cV, i # j ,  d‘z;l/dps = 4bi, and  the intensity of 
stabilizing selection becomes 

seP - 2biaipiqi [ I  2 2 2  

+ 4cycu;piqicujpjqj / ( Z i j P ) .  ( 3 4 )  
i#j 1 

Let the values of the  contributions of the loci to  the 
trait, ai, be  drawn  from  a probability distribution with 
mean 6 and  the variance a:. The expectation of the 
terms in the squared  bracket in ( 3 4 )  approximately 
becomes 

G* 2bip‘q’ + 4cij~iqipiqj + U: 2bip’qP. (35) 
[ i  i#j 1 1  

Let us introduce  the weighted means 

1 C(bipiqi)piqi A C(cijpjqj)piqi b =  
Cpiqivq) ’ = (n - 1)CPiqiW)’ 

where ($4) = Cpiqi/n is the mean of the p,qi values. 
Note  that if all allele frequencies are equal, S and c^ 
are exactly the  arithmetic means of bi and cy .  Using 
these weighted means, we can rewrite expression (35) 
as 

[ S  + 2(n - l)c^](pq)(C2G2piqi) + &q)(C2dpiqi).  (36) 

The last expression shows that in this epistatic model 

the value of parameter seP crucially depends  on  the 
relative order of the mean and  the variance of the 
contributions of the loci to  the  trait. 

Let us first consider the situation when 6’ << a:. In 
this case, the sign  of the effects of the loci on  the  trait 
is random with respect to  their effects on fitness. The 
“independence” of the allele effects of these two types 
can  naturally  be interpreted as “neutrality” of the trait. 
If 6‘ << a:, the  parameter seP can be  approximated by 

s:F‘ = - [i( I 5 4  V g P ’  (37) 

and does  not  depend on  the epistatic terms. If 6’ >> 
a:, the sign  of the effects of the loci on  the  trait is 
fixed with respect to  their effects on fitness. In this 
case, the trait can be naturally considered as “non- 
neutral” or “adaptive.” If (Y2 >> a:, the  strength of 
apparent selection is characterized by 

s$~P -[6 + 2(n - l)c^](pq)/G Vg /P2 .  (38 )  

Comparison of ( 3 7 )  with ( 1 4 )  suggests that  for  “neu- 
tral” traits,  apparent selection is approximately Yzn 
times weaker than  real  selection, just as in the  over- 
dominant model. In  contrast,  for  “adaptive  traits, 
comparison of (38 )  with expression (30 )  suggests that 
the  apparent selection can be as strong as real selec- 
tion. The relationships between apparent  and  real 
selection on traits with different  degrees of adaptivity 
are investigated numerically in the  next section. 

NUMERICAL  RESULTS 

In  order  to  get a  clearer view  of the relationships 
between  trait values, fitness, and  apparent selection, 
we computed  numerical examples for the additive 
model,  for  a symmetric model, and  for  the model with 
additive by additive epistatic interactions between 
pairs of  loci. For each we used n = 20 loci. One of the 
assumptions underlying our analysis was that linkage 
disequilibrium could  be  neglected.  In  additive models, 
polymorphic equilibria are always  in linkage equilib- 
rium.  In symmetric models this is true with respect to 
the  central equilibria (where all allele frequencies 
equal  one half), while  in models with additive by 
additive epistatic interactions between pairs of  loci, 
linkage disequilibrium can be neglected if selection is 
weak relative to  recombination. 

In  additive models fitness was determined by 
expression ( 1 2 )  where the contributions of loci to 
fitness ai and b, were  drawn  independently from  nor- 
mal distributions with means ci, 6, and variances a: 
and a:. In  the symmetric model, fitness was deter- 
mined as 

w = w(h) = (h  + p ,  

where h is the  proportion of heterozygous loci, and 4 
and { are  parameters [KARLIN and AVNI (1981) ,  
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expression 6.2bI. In the models with additive by ad- 
ditive epistatic interaction  between  pairs of loci, fitness 
was determined by expression (33) where the contri- 
butions of loci to fitness a,, b,, and cg were drawn 
independently  from  normal  distributions with means 
ci, 6, E and variances a:, ai, and a?, respectively. Mean 
values ci, 6, and E were chosen such that  the  corre- 
sponding epistatic model with a, = ci, 6i = 6, cy = E has 
a stable polymorphic  equilibrium, at p *  = -ci/(26 + 

Individuals were  sampled  from the equilibrium pop- 
ulation. In the paternal  gamete, locus i was allotted 
the allele Ai with probability fl? and  the allele a, with 
probability qT = 1 - p T ,  and similarly for  the maternal 
gamete.  For an individual with known genotype, fit- 
ness was computed  according to a  corresponding 
model. A pleiotropic  trait was determined by the same 
loci. The microenvironmental  deviation was absent. 
Both additive  traits and traits with dominance  and 
additive by additive epistasis were considered. The 
general  formula used for  calculating the  trait value 
was 

4E(n - 1)). 

x = p + [ai(& + I;) + 2p,z,z:1 
I 

+ yy(Z, + Zi)(Ij + Ij). 
i#j 

Here if ai # 0, pi = yg = 0, the  trait is additive  both 
“between”  and “within” loci; if a, # 0, pi # 0, y g  = 0, 
the  trait is additive  “between” loci with dominance 
“within” loci, and  the case with a, # 0, pi # 0, y y  # 0 
corresponds to  the  trait with additive,  dominant, and 
additive by additive epistatic interactions  between 
pairs of loci. The contributions of loci to  the trait ai, 
pi, yg were drawn  independently  from  normal  distri- 
butions with means 6 ,  p, and r, and variances a:, uz 
and a:. 

In order  to investigate the relations  between  traits 
and fitness, 5000 individuals were  sampled. The max- 
imum fitness observed  amongst  those 5000 individuals 
was used to  convert  absolute fitness w to relative 
fitness w ’ = w/wmax. Using the  s.mple  trait mean, i ,  
and  the sample trait  variance, P ,  the  trait value for 
each individual was normalized to x ’  = (x - 2)/$ 
The individuals were collected according to x ’  into 
50 classes  of a width of about 0.1 standard  deviation; 
for  the individuals in each class, relative fitness was 
averaged to arrive  at  the  apparent fitness wobs(x’). 

Form of apparent selection on a  quantitative  trait 
In  a  nonequilibrium  population, we expect Wobs(X’) 

for  an additive  trait to show directional selection; 
Figure 1A gives wobs(x’)  for  an additive trait,  at  ran- 
dom allele frequencies. We expect to observe stabiliz- 
ing selection on  an additive  trait if the population is 
at a  stable  polymorphic  equilibrium determined by 
selection. Figure 1, B-D, present the  form  of  apparent 

selection on a  purely  additive  trait  for the  three via- 
bility models considered.  Figure 2A represents 
wobs(x’) for a  traits with random  dominance.  Figure 
2B describes apparent selection on a  trait with both 
random  dominance  and epistasis. This  figure suggests 
that  the conclusion about  apparent stabilizing selec- 
tion on additive  traits with random  dominance may 
be  generalized for nonadditive  traits with random 
epistasis. 

In these  figures,  the  average  relative fitness per 
class  wobs(x’)  is almost perfectly quadratic, with its 
highest value at  or very near X. This changes if the 
average of the dominance  contributions is not  zero, 
but now the fitness model as  well as the  trait compo- 
sition becomes important  (Figure 2C). We observe 
directional, almost linear, selection if the coefficients 
of the  trait  are constant multipliers of the coefficients 
of fitness (Figure  2D).  In  other situations (G. DE JONC 
and S. GAVRILETS,  unpublished results) we can ob- 
serve very complex fitness functions with clearly asym- 
metric selection at low epistasis in the  trait;  at  higher 
epistasis the maximum is displaced from X. 

Strength of apparent  selection on a  quantitative 
trait: In Table  1,  different characteristics of the real 
and  apparent  strength of selection in the additive 
model and in the epistatic model are given. In this 
table  quantities  from  theoretical  expectations  arrived 
by summation  over loci  as  in (10,  11)  and (34) are 
listed together  under  the  heading  “Theoretical,”  and 
quantities  computed  from  a sample of 5000 individ- 
uals are listed together  under  the  heading  “Ob- 
served.” The observed coefficient s was estimated by 
the regression of individual fitness w on the squared 
deviation of an individual’s trait value from  the sample 
mean. The apparent load is estimated by  sVg where V, 
is the phenotypic  variance. This  apparent load corre- 
sponds to Vg/2Vs in (BARTON  1990; KEIGHTLEY and 
HILL  1990). The observed fitness deviation for any 
individual can be divided into two independent  parts, 
the deviation of w ( x )  from zi, and  the deviation of w 
from  the  apparent fitness w(x):  w - zi, = [w(x )  - 51 + 
[w - w(x) ] .  The total  observed variance in fitness 
var(w),bS becomes the sum of var(w(x) - Zi)),bs and 
var(w - w(x))obs. The quantity var(w)obs estimates the 
variance in the real fitness, var(w), while the  quantity 
var(w(x) - W)obs estimates var(w)app. 

In Table  1, two cases for  the  overdominant fitness 
model and two cases for  the epistatic fitness model are 
presented. The overdominant case 1 has the same 
average fitness and equilibrium allele frequencies as 
the epistatic case 3, while the  overdominant case 2 has 
about  the same total load as the epistatic case 3. Case 
4 represents epistasis at a  higher  number of loci, with 
the same value of 6 + 2c(n - 1) as cases 1 and 3. Table 
1 shows that, as  expected,  the genetic load in the 
epistatic model is much lower than in the correspond- 
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FIGURE 1 .-Apparent selection on an additive trait pleiotropic to fitness. Shown are the apparent fitness as a function of trait  value and 
the frequency distribution of trait values. The trait  is determined according to expression (40), with:p = 0 ,  LU = 10.0, uz = 4.0, 3 = 0, ui = 
0, i. = 0, ut = 0. (A) Nonequibbrium population, random allele frequencies. Epistatic  asymmetric fitness model, expression (33), with m = 
100, ci = 20.0, u: = 0.0625, b = -2.0, uz = 0.01, t = -0.5, u: = 0.000625. (B) Equilibrium population. Overdominant fitness model, 
expression 12, with m = 100, ci = 20.0, u: = 0.0625, i = -21.0, u; = 0.0225. (C) Equilibrium population. Symmetric fitness model, expression 
(39), 5 = 0.5; = 4.5. (D) Equilibrium population. Epistatic asymmetric fitness model, expression (33). with m = 100, i = 20.0, 6.' = 0.0625, 
6 = -2.0, uz = 0.01, t = -0.5 and u? = 0.000625. 

ing  overdominant  model. The ratio of the  strength of 
apparent selection to  the  strength of overall selection 
is much  higher in the epistatic model. 

In the case  of overdominance, the characteristics of 
the  apparent selection do  not  depend upon the  degree 
of "adaptivity," ie., on  the relation between the mean 
and  the variance of ai. In  Figure  3,  the  ratio of 
apparent load to total load is given. In  Figure 3, A 
and B, the  equilibrium allele frequencies and  the mean 
fitness are  the same. If epistasis is absent,  as in Figure 
3A, no effect of the mean and  the variance of the 
contributions of the loci to  the trait is found  at all. 
Without epistasis we find that  both  the  explained  part 
of the genetic load and  the explained part of the 
genetic variance in fitness are very small (Table 1, 
case 1). In  the epistatic model these values are small 
if a! << u,, but become very large if a! >> u, (Figure 
3B). In  Figure  3C, the explained part of the genetic 
load is given for  different  strength of epistasis, 
for  both a! << a, and a! >> ua. The apparent load at 
& >> a, is independent of the  parameter c, only de- 
pendent  upon b + 2c(n - l), as shown in expression 
(35). At 6/ua = 0, the intensity of selection is demon- 
strated by expression (37). The part of the genetic 
load explained by the  apparent stabilizing selection 

only appreciably rises with the  strength of epistasis 
when the absolute value of 2c(n - 1) is larger  than 
the absolute value of 6 ,  at  around c = -0.3. 

This is illustrated in Figure 4, A and B, by plotting 
the actual fitness of 100 individuals as well as  their 
apparent fitness value on  the basis  of their  trait value. 
As can be seen in Figure 4A, the overdominant model 
does  not lead to a  clustering of fitness values around 
w(x) .  In Figure 4B, the  degree of epistasis is high,  and 
individual fitnesses follow the  apparent fitness func- 
tion almost perfectly. This is a visual example of the 
difference  between  the  overdominant and epistatic 
models in explaining the genetic variance in fitness. 
The part of the genetic variance in fitness that is 
explained increases with the  number of  loci  in the 
presence of high epistasis (Figure 4C). The epistatic 
model performs well  in both  the  ratio of explained 
fitness variance to the total fitness variance, and  the 
ratio of apparent load to total genetic load. The 
overdominant  model  cannot distinguish between 
"neutral"  and "adaptive" traits. 

DISCUSSION 

The surprising  result here is  how  few assumptions 
are necessary to  arrive  at  apparent stabilizing selection 
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FIGURE 2.-Apparent selection on traits pleiotropic to fitness and influenced by dominance and epistasis. Shown are the apparent fitness 
as a function of trait  value and the frequency distribution of trait  values.  Fitness in  !he equilibrium populations is according to the epistatic 
asymmetric fitness model, expression (33), with m = 100, ci = 20.0, u: = 0.0625, b = -2.0, uf = 0.01, E = -0.5 and u: = 0.000625. (A) 
Random dominance, no epistasis in the trait: p = 0, 6 = 10.0, uq = 4.0, s = 0, uj = 9.0, i. = 0 and u: = 0. (B) Random dominance, random 
epistasis  in the trait: p = 0, & = 10.0, uz = 4.0, p = 0, uz = 9.0, i. = 0 and u: = 0.25. (C) Partial dominance, no epistasis  in the trait: p = 0, 
d = 10.0, bp, = 7.0, = -4.0, u; = 0.0, i. = 0 and u: = 0. (D) Dominance and epistasis in the trait, averages of the trait coefficients a constant 
multiple of the averages of the fitness coefficients: p = 0, & = 10.0, uz = 16.0,s = -4.0, uj = 0.16, i. = -1.0 and u: = 0.025. 

on a  quantitative  trait pleiotropically connected with 
fitness. For any polygenic system in which variability 
is maintained by selection, all we need is either  that 
the  trait  be  additive, or that  dominance  and epistatic 
effects of loci on  the  trait  to be  considered  as  inde- 
pendent  random variables with mean  zero.  Such  a 
consideration implies that  the sign of the  dominance 
and epistatic effects of the loci on  the  trait is random 
with respect to  their effect on fitness. This  “independ- 
ence” of the allele effects of these two types can be 
naturally interpreted as “neutrality” of the allele ef- 
fects on the  trait. For a polygenic system  in  which a 
low level of variability is maintained by mutation or 
migration, an additional  condition is that  the additive 
effects are  “neutral” too. On  the  other  hand, in order 
to observe  “directional” selection on a  quantitative 
trait,  either  the  genetic system has to be at a “tran- 
sient”  state, or the effects of  the loci on the trait  have 
to be systematically related to those on fitness. The 
natural  interpretation of the  latter case is “adaptivity” 
of the  corresponding  contributions of the loci to  the 
trait. Assuming that  the genetic system is at a  stable 
equilibrium determined by selection, we therefore can 
say that any quantitative  trait  for which nonadditive 
contributions are absent or random  and  independent 

of those to fitness will exhibit “stabilizing selection,” 
while traits  for which nonadditive  contributions are 
related to those to fitness will exhibit  “directional 
selection.” For genetic systems  in  which variability is 
maintained by mutation or migration, any trait  for 
which both  additive and nonadditive  contributions 
are  random  and  independent of those to fitness will 
be  under  apparent stabilizing selection and any trait 
with contributions  related  to those to fitness will be 
under  apparent directional selection. 

Two pleiotropic models with additive fitness were 
recently analyzed with respect to  their utility to ac- 
count  for  both  the  high heritability and  the  strong 
apparent stabilizing selection which are commonly 
observed: mutation-selection balance model (BARTON 
1990; KEICHTLEY and HILL 1990)  and  the  overdom- 
inant model (BARTON 1990). The results of these 
analyses show, however, that  neither model can be 
easily accepted  as  a possible explanation. The difficul- 
ties with the mutation-selection balance model lie both 
in the low  levels  of maintained variability (BARTON, 
1990)  and in the weak stabilizing selection predicted 
(BARTON 1990; KEIGHTLEY and HILL 1990). The 
overdominant model fails due  to load arguments 
(BARTON 1990). 
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TABLE 1 

Comparison of overdominant  and  epistatic  fitness  model: effect of “neutral”  and  “adaptive”  traits on apparent selection, apparent  load 
and explained  load, apparent fitness  variance  and  explained  fitness  variance 

Overdominance Epistasis 

Fitness  model  Case la Case 2‘ Case 3‘ Case qd 

A. Contributions of loci to fitness equal 
&/ah 0 5 0 5 0 5 0 5 

P 100  100 100 100 
a 20.0 1 .o 20.0 20.0 
b -21.0 -1.05 -2.0 -1.008 
C 0.0 0.0 -0.5 -0.2564 
b + 2c(n - 1) -21.0 -1.05 -2 1 -21 

b - 2c -21.0 - 1.05 -1.0 -0.488 
n 20 20 20 40 

ri, 290.47 290.47 109.52 109.52 290.47 290.47 480.95 480.95 
L 0.4 190 0.4190 0.0637 0.0637 0.0506 0.0506 0.0262 0.0262 
L.ppsmntf 0.0177 0.0177 0.00239 0.00239 0.0033 0.0173 0.000732 0.0 104 
L,-,/L~ 0.0422 0.0422 0.0274 0.0274 0.0648 0.3413 0.0278 0.3978 
var(w) 2195.01 2195.01 5.4875 5.4875 67.194 67.194 61.156 61.156 
varIwtaWmntf 54.87 54.87 0.1372 0.1372 1.8353 52.308 0.2481 5  1.405 
var(w),/var(w)f 0.0250 0.0250 0.0250 0.0250 0.0273 0.7785 0.0041 0.8405 

ri, 290.75 290.75 109.54 109.54 290.49 290.49 481.06 48 1.06 
L 0.3392 0.3392 0.0638 0.0638 0.0507 0.0507 0.0262 0.0262 

Parameters 

P *  0.47619 0.476 19  0.47619 0.47619 

Theoretically predicted values 

Observed values over 5000 simulated individuals 

L p p W “ t f  0.0166 0.0177 0.00240 0.0241 0.0030 0.0177 0.000870 0.0104 
L.,.JL~ 0.049 1 0.0522 0.0376 0.0377 0.0590 0.3499 0.0332 0.3970 
varlw) 2186.92 2186.92 5.4668 5.4668 66.29 66.29 60.12 60.12 
varlwt.,,tf 53.45 53.51 0.1336 0.1 337 1.49 52.96 0.3609 51.47 
var(w).pp/var(w)f 0.0245 0.0245 0.0244 0.0244 0.0225 0.7988 0.0060 0.8562 

B. Contributions of loci to fitness normally distribute& 
Parameters 

P 100 100 100 100 
ci 20.0 1 .o 20.0 20.0 
0, 0.25 0.0125 0.25 0.25 
b -2 1 .o -1.05 -2.0 - 1.008 

E 0.0 0.0 -0.5 -0.2564 
UC 0.0 0.0 0.025 0.0125 
- b + 2c(n - 1) -21.0 -1.05 -2 1 -2 1 
P* 0.4785 0.47789 0.4790  0.4769 
U l P t  0.0056 0.01015 0.1599 0.2574 

ob 0.15 0.0075  0.1  0.05 

b - 2c -21.0 -1.05 -1.0 -0.488 
n 20 20 20 40 

ri, 291.12 291.12 109.60 109.60 293.01 293.01 485.63 480.95 
L 0.4183 0.4183 0.0872 0.0872 0.0449 0.0449 0.0207 0.0207 
Lspp.mtf 0.0 176 0.0176 0.0024 0.0024 0.0032 0.0 154 0.00056 0.0076 
L.,,JL~ 0.0422 0.0427 0.0373 0.0377 0.0723 0.3431 0.0271 0.3657 
varlw) 2192.03 2192.03 5.4790 5.4790 53.4526 53.4526 33.9919 33.9919 
var Iw t pWWnt f 54.9948 54.8226 0.1371 0.1371 1.6808 41.1845 0.1522 27.6821 
var(wIapp/var(wIf 0.0251 0.0250 0.0250 0.0250 0.03 15 0.7705 0.0045 0.8144 

ri, 292.34 292.34 109.62 109.62 292.92 292.92 485.62 485.62 
L 0.3383 0.3383 0.0638 0.0638 0.0452 0.0452 0.0208 0.0208 

Theoretically predicted values 

Observed values over 5000 simulated individuals 

Lappsrmtf 0.0175 0.0191 0.0024 0.0026 0.0034 0.0162 0.00055 0.0078 

LspPs-1/Lf 0.0518 0.0564 0.0379 0.0408 0.0748 0.3593 0.0266 0.3746 
var(w 1 2137.25 2137.25 5.3761 5.3761 58.025 58.025 34.1307 34.1307 

varIwlappnntf 7.168 7.959 0.3631 0.3999 1.3298 46.6110 0.1426 28.2695 
var(w),/var(w)f 0.0033 0.0037 0.0675 0.0744 0.03 15 0.8034 0.0042 0.8283 

Case 1 and case 3 have similar mean fitness ri, but differ in  epistasis c. 
Case 2 and case 3 have approximately similar genetic load L but  differ in  epistasis c. 
Cases 1, 3 and 4 have identical nonadditivity b + 2c(n - 1). 
Case 3 and case 4 differ in number of  loci n. 

e &/ua = 0 stands for a “neutral”  trait; %/urn = 5 stands for an “adaptive” trait. 
f “Neutral” us. “adaptive” has an influence only under  the epistatic fitness model. 
g The variance Over loci  in equilibrium allele frequency due  to  the normal distribution of the locus parameters has little influence. 
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FIGURE 3.-Part of the genetic load that is explained by the 
apparent fitness function,  depending upon the fitness model and 
the ratio of mean to standard deviation for  the trait coefficients. 
Additive traits: trait 1: IJ: = 4.0; trait 2: IJ: = 225.0. All loci identical 
values for fitness. (A) Overdominant fitness model: m = 100, a = 
20.0, b = -21.0, c = 0: w = 0. Without epistasis, the genetic load 
explained by the  apparent fitness function does not  depend  on the 
ratio (Y/u.. (B) Epistatic fitness model: m = 100, a = 20.0, b = -2.0, 
c = -0.5: w = 0.9. With epistasis, the genetic load explained by the 
apparent fitness function depends  on the ratio d u e ,  ie., on the 
ordering of the trait coefficients a with respect to  the fitness 
coefficients a. (C) The influence of the  degree of  epistasis  in fitness 
on  the  part of the genetic load explained by the apparent fitness 
function: m = 100, a = 20, b + 2c(n - 1) = -21.0, -cas indicated. 
If Cr = 0, and  the sign of the  trait coefficient a is random with 
respect to  the fitness coefficient a, the part of the genetic load 
explained by the apparent fitness function decreases with increasing 
level  of  epistasis. If Cr/ua = 5, and  the sign of the  trait coefficient a 
is identical to that of the fitness coefficient a, the part of the genetic 
load explained by the  apparent fitness function increases with 
increasing level of epistasis. 

In this paper, we have  applied our general  results 
on  apparent fitness functions  both to  the additive 
viability models analyzed by BARTON and KEIGHTLEY 
and HILL, and  to a  general  mutation  (migration)- 
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FIGURE 4."Genetic variance in fitness as explained by the ap- 
parent fitness function. Additive trait, ci = 10.0, u: = 4.0, (Y/a, = 
5.0. (A) Fitness and apparent fitness for 100 individuals under  the 
overdominant fitness model; n = 20 loci, m = 100, ci = 20.0, 6.2 = 
0.0625, i = -21.0, IJ; = 0.0225, w = 0. The apparent fitness 
function explains %n of the genetic variance in fitness, see in C 
under n = 20 loci. (B) Fitness and apparent fitness for 100 individ- 
uals under  the episSatic fitness model; n = 20 loci, m = 100, ci = 
20.0, IJ; = 0.0625, b = -2.0, I J ~  = 0.01, I = -0.5, IJ, = 0.000625, w 
= 0.9. The apparent fitness function explains the  greater part of 
the genetic variance in fitness, see  in C under n = 20 loci. ( C )  The 
part of the genetic variance in fitness that is explained by the 
overdominant and by the epistatic fitness model as a function of 
the  number of  loci n. For the epistatic fitness model, the highest 
degree of  epistasis that is compatible with n polymorphic loci  is 
chosen. Overdominant fitness model: m = 100, a = 20.0, b = -21.0: 
The part of the genetic variance in fitness that is explained equals 
(Yzn). Epistatic fitness model: m = 100, a = 20.0, b + c(n - 1) = 
-21.0, b = 4c. The part of the genetic variance in fitness that is 
explained equals ($412). [b +2c(n - 1)J2/[bz + 2c2(n - I)]. 

selection balance model and  to two non-additive via- 
bility models. These  are: a symmetric viability model, 
in  which fitness depends  on  the  proportion of heter- 
ozygous loci, and a model with additive by additive 
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epistatic interactions between pairs of loci.  We dem- 
onstrated  that  the  strength of apparent stabilizing 
selection on an additive  trait in the population,  where 
a low  level of polygenic variability is maintained by 
mutation or migration, is order Vm/Vg independently 
of the real selection. The typical experimental esti- 
mate of Vm/Vg for  mutation is about lo-’ [e.g. ,  LYNCH 
(1988)l.  This makes it impossible to explain strong 
stabilizing selection observed in terms of mutation- 
selection balance models. We showed that  both in the 
overdominant model and in the symmetric viability 
model the  strength of apparent stabilizing selection 
on an  additive  quantitative  trait is approximately 1/ 
(2n) times the  strength of the overall selection on 
whole phenotype. On the general supposition that  the 
number of loci, n, influencing fitness is very large, it 
is impossible to explain strong stabilizing selection in 
terms of these two pleiotropic models. 

Epistasis can change all this. The epistatic fitness 
model can maintain the same (very high) level  of 
genetic polymorphism as the  overdominant  model. 
Any model that  attempts  to explain the maintenance 
of high levels  of genetic variability at many  loci meets 
the problem of genetic load. The overdominance per 
locus model can, in principle, maintain very high levels 
of variability. However, in this model the genetic load 
associated with polymorphism increases very quickly 
(linearly or exponentially) with the  number of  loci. 
This means that models involving overdominance per 
locus cannot be taken as a  general case  of  selectively 
maintained polymorphism. Nor is per locus overdom- 
inance  indicated as a  general case  of selection by 
experimental results. Contrary  to  the  overdominant 
model, genetic load and  the genetic variance in fitness 
in the epistatic model can be very  low. For fitnesses 
involving epistasis, the genetic variance in fitness (and 
genetic load) can be as small as 1/(2n)  that of the 
overdominant model (Equation 19, Figure  1). In  other 
words, these values in the epistatic model are  approx- 
imately half the  corresponding values at a single locus 
of the  overdominant  model. The results of numerical 
simulations show that this is also true in more  general 
models with “unequivalent” loci. Thus,  from a  theo- 
retical point of  view, epistasis seems to be  able to solve 
the  problem of genetic load. From  general  consider- 
ations epistasis in fitness is likely to occur in real 
organisms. For  example, epistasis has to occur in any 
organism where  both the acquisition of a  resource 
and  the allocation of that  resource  to  competing  traits 
are  under genetic control (DE JONG and VAN NOORD- 
WIJK 1992), or when both viability and fecundity are 
genetically correlated  and total fitness is their  product. 

If we accept  that stabilizing selection is only or 
predominantly “apparent,”  then we have to be  able to 
explain the fact that this apparent stabilizing selection 
is sometimes very strong (BARTON 1990).  Neither  the 

general mutation-selection balance model nor  the ov- 
erdominant viability model and  the symmetric viabil- 
ity model can produce  strong  apparent stabilizing 
selection on an additive  trait. This conclusion does 
not  depend on whether we measure the  strength of 
selection by the genetic load or by the genetic variance 
in relative fitness. In  the epistatic model with “equiv- 
alent” loci, the  strength of apparent stabilizing selec- 
tion  (measured by genetic load or by genetic variance 
in fitness) may be as large as the  strength of “real” 
selection. This model, however, assumes in an implicit 
form  that effects of alleles on fitness and on the 
quantitative  trait are strongly related.  In  the case 
where  these two types of allele effects are completely 
independent,  the  strength of apparent phenotypic 
selection is weak (approximately 1/(2n) times less than 
the total  strength of selection). What we really have 
seems to lie somewhere  between two extremes,  the 
interdependence of these two types of allele effects 
exists, but is not  absolute (MACKAY 1990; KEIGHTLEY 
and  HILL  1990).  In this paper, we used the  ratio &/urn 
as a  measure of the  interdependence. If (Y << ua, then 
the sign of the effects of the loci on the  trait is random 
with respect to  their effects on fitness. Such a situation 
can be  naturally interpreted as “neutrality” of the  trait. 
A  trait  for which G >> ua, can be naturally interpreted 
as “non-neutral” or “adaptive.” Results of numerical 
simulations show that in the epistatic model the  ratio 
of the  strength of apparent  to real selection can take 
any value between 1/(2n)  and 1  depending on G/ut&. 
The effect of this ratio on the  strength of apparent 
stabilizing selection resembles that of the correlation 
of p of KEIGHTLEY and  HILL  (1990). An intuitive 
explanation of this similarity can be given if one 
considers the  situation  where  both fitness and  the trait 
is additive. In this case the covariance cov(w, x) de- 
pends on the expected value E(aiai} = cov(a,, ai) + Gci. 
This shows that we can change cov(w, x) either by 
changing covariance of a, and ai, or changing  the 
corresponding mean values. 

In conclusion we stress two points. First, our results 
on apparent stabilizing selection do not necessarily 
lead to  the suggestion that  the  traits are not subject 
to direct selection. There  are many mechanisms which 
can generate  apparent stabilizing selection on the 
trait.  Pleiotropy may be one of them.  Second, the 
epistatic models considered in this paper  are not in- 
tended  to  be  an  ultimate  explanation of the mainte- 
nance of polygenic variability and  apparent stabilizing 
selection. More analysis of these and  more complex 
models are needed. Models and results presented here 
should  point out possible points of attention  and sorts 
of observations  that should be  appropriate.  One of 
the essential points is whether selection can be fully 
described as an environmental  influence on  an already 
fully developed  phenotype, as any model of the  form 
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w = w(x) tends to suggest, or whether  apparent selec- 
tion comes about  during development due  to pleio- 
tropy  between fitness and  the  trait. As with most 
conceptual  dichotomies, this is overstating the differ- 
ence.  What we need is to know  how development and 
environment  connect fitness and  the  trait. 
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APPENDIX 

Here we calculate the  apparent fitness function (2). 
Let there be n loci  with two alleles each: Ai and ai 
(i = 1 , .  . . , n). Let the indicator variable l i  (I:) be  equal 
to 1 ,  if the allele at  the  ith locus  of the paternal 
(maternal)  gamete is A,, and  to 0, if this allele is ai. Let 
us introduce  the (212 x 1) vector L with the compo- 
nents, L, = l,, L,+, = l / ,  i = 1 , .  . ., n. This vector 
defines the genotype. Any dependence of fitness, w ,  
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on the genotype, L ,  can be  represented as a sum in 
the form 

2n 2n 

w(L) = m + ZIiLi + BuLiL, 
i i#j 

2n 

+ CjjkLjLjLk + . . ., (AI) 
i#j#k 

where m, ZI,, Bu, a,, . . . are parameters of the fitness 
function. We  shall assume that  the relative  contribu- 
tion of each sum in (Al )  to w does not  depend on the 
number of  loci. The mean fitness of the population is 

2n 2% 

~ { w )  = m + + B ~ E { L , L ~ ]  
i i#j 

2n 

+ aqkE(LiL&k1 + . . ., (A2) 
i#j#k 

where E denotes the average  over the population and 
1; = E(Li).  Note  that Li (E,+,), i = 1 , .  . ., n, is the 
frequency of allele Ai at the  ith locus of the paternal 
(maternal)  gamete,  and  that  the  expectations in (A2) 
represent  the  frequencies of the  corresponding  mar- 
ginal gametes and genotypes (SLATKIN 1972; EWENS 
and THOMSON 1977). For  example, E(L1L21 is the 
frequency of the two-locus marginal gamete A1A2, 
while E(LILn+l} is the frequency of the one-locus mar- 
ginal genotype AIAI. Let 

ci. . ., = E((L,  - 11). . .(Lj - &)) 

denote  the covariance of the indicator variables 
L,, . . . , Lj. For example, if both i 6 n and j S n, then 
Du = Cu is the  standard linkage disequilibrium between 
the ith and  thejth loci, while Di,; = Ci(t+n) characterizes 
the deviation from  Hardy-Weinberg propor- 
tions"within" the ith locus. The expectations in (A2) 
( i . e . ,  the  frequencies of marginal gametes and geno- 
types) can be  expressed as functions  linear in C ,  for 
example 

N 

E(LIL2 . . . . LN) = II + (d211/d&&)C, 
1Cj 

N 

+ (d3rI/dz;d&ddL-,)cqk + . . ., (A3) 
i < j 4  

where II = . . . E N  (SLATKIN 1972; BARTON 
1983). Substituting the expectation in (A2) by the 
corresponding  terms in the  form similar to (A3) and 
gathering  terms, we get 

1 
E ( ~ )  = w + - ( d 2 ~ / d ~ i d ~ j ) ~ ,  

i#j 2 
" 

2n 1 

where G incorporates all terms  that  depend only on 
E;: 

2n 2n 

w = m + %Ji + B&& 
i i#j 

2n 

This is just  the mean fitness of the  population  both at 
linkage and Hardy-Weinberg  equilibrium. Assume 
now that  the distributions of paternal and maternal 
gametes are equal. This implies that  for i S n, j 6 n, 

and so on. Note also that d2G/dLidLi+, = (Vz)d2G/dp', 
dzz;l/dLid& = ('/4)d2z;l/dpidpj, and so on. Expression (A4) 
can be  rewritten as 

" 

L .  I = L .  t+n = p .  I ,  C . .  I] = C(i+,,)G+,,) = DqLC~+,,)  = C,,+,, = Did, 

where pi = E = E+, is the frequency of allele A, in the 
population, and Di..  , j , k , .  is the "linkage disequili- 
brium"  among loci i, . . . , j at  the  paternal  gamete and 
loci k,. . . , 1 at  the maternal  gamete. The indexes in 
(A6) run  from 1 to n. 

The mean fitness of the subpopulation having the 
value of x of a  quantitative  trait, w ( x )  E(w I x ) ,  is 
described by 

+ 2 - (d3W/dflidpJdpk)(D;k + 3D:jk) + . . . , 1 

i#j#k 24 

where p : ,  D; ,   D t j , .  . . are  the corresponding charac- 
teristics of the subpopulation, and  the partial  deriva- 
tives are evaluated at @?, . . . , p : ) .  Note  that even if  
the population is at linkage and Hardy-Weinberg equi- 
librium, the subpopulation with a  fixed value of the 
trait is not.  Expanding 5 and partial derivatives in a 
Taylor series at  the point ( P I , .  . . , pn), we have 
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where now the partial derivatives are evaluated at 
($1,. . . , p,,). The last formula shows that  to calculate 
the  “apparent” fitness function one has to know the 
conditional  frequencies p : ,  the conditional disequili- 
bria Dt,,   D;,  Dri, and so on. 

Let us first consider the conditional mean pf = 
Ell, ( X  = x), which can be  represented as 

p :  = E ( &  I x = x)  

pi 
Pr{XE(x, x + d x l  l i  = 1 )  f ( x l  Z i  = 1)  

Pr(XE(x, x + d x )  
= pi f (A9) f ( 4  

wheref(x) is the phenotypic  distribution of x in the 
population, and f ( x  I Zi = 1 )  is the phenotypic  distri- 
bution  conditioned on  the presence of allele Ai. HAS- 
TINGS (1990) has shown that if epistasis in the  trait 
and linkage disequilibrium are  absent,  the phenotypic 
distribution  conditional  on the presence of the speci- 
fied allele, A,, at  the specified locus, i, can be approx- 
imated as 

f(x I11 = 1 )  = f ( x )  - ( S ? ) i f ’ ( X )  

1 
2 

where ( 6 ~ ) ~  = E ( x ) Z ,  = 1 )  - X and (SP), = P - var(x1 Z i  
= 1 ) are  the mean effects of allele A, on  the mean 
value and phenotypic  variance, and  the  error is third 
order in the mean effects (Si). Substituting (A10) into 

+ -((S$ - (SP);)f‘(x), (A10) 

(A9), 

HASTINGS (1990) has also shown that  an expression 
analogous to (A10) is valid for  the  phenotypic  distri- 
bution  conditioned on  the presence of two specified 
genes at  the  ith locus. Applying HASTING’S approach 
for  the phenotypic  distribution  conditioned on  the 

presence of two alleles A, at  the  ith locus, we get 

1 + - ((62); - (SP),i) pt‘ - f ” ( 4  
2 f ( 4  + . . ., (A12) 

where = E ( x l 1 ,  = 1: = 1 )  - X, and (SP)i, = P - 
var(xIl;=ZI= l ) . H e n c e , D ~ i ~ E ( Z ; Z ~ ~ X = x ) - E ( l , ~ X  
= x}E(Z! IX = x) can be  represented as 

Using HASTINGS’ formulas  for the phenotypic distri- 
bution  conditioned on  the presence of allele A, at the 
ith locus and allele A, at  thejth locus, we have 

where (62)q = E ( x  I l i  = 1, = 1) - X, and (SP)q = P - 
var(x I li  = Z j  = 1 ) .  Formulas (A1 1 ,  A1 4 )  allow us to 
approximate  the  conditional disequilibria. Since the 
trait is additive  between loci, (6X)q = (Si), + ( S X ) j ,  (SP),j 
= (Sf‘), + (SP)], and 

x 
The same formula is valid for D,,. Substituting (A1 1 ,  
A1 3, A1 5 )  into (AB) and slightly rearranging  the 
terms, we get  Equation 2 of the main text. 

Average effects on the mean  and the variance: An 
additive  trait with arbitrary  degree of dominance can 
be described as 

x = p + C[ai(Z, + I : )  + 2p,l,l(] + e ,  

For this trait  the  average effects of alleles on  the mean 
value and  on  the variance of the  trait  are 

(62)i = aiq, + 2pipiqi, (SP), = at’piqi 


