Supplementary Information for "Rapid evolution of reproductive barriers driven by sexual conflict" by S. Gavrilets. PART 2. ## Derivation of equations 9 from equations 7 Let p(z) be the distribution of a quantitative trait z in the population with the mean \overline{z} and central moments M_i (= $\int (z - \overline{z})^i p(z) dz$). Let the fitness function be represented as a polynomial in $z - \overline{z}$ $$w(z) = a_0 + \sum_{i=1}^{k} a_i (z - \overline{z})^i,$$ where coefficients a_i are allowed to depend on the moments of p(z) but not on z. Taking the mathematical expectation of both sides of the last equation one finds that the mean fitness \overline{w} can be represented as $$\overline{w} = a_0 + \sum_{i=2}^k a_i M_i.$$ Accordingly, the numerator in equation 7a is $$I_{1} = \int zw(z)p(z)dz$$ $$= \int (z - \overline{z} + \overline{z})w(z)p(z)dz$$ $$= \int (z - \overline{z})[a_{0} + \sum_{i=1}^{k} a_{i}(z - \overline{z})^{i}]p(z)dz + \overline{z} \int w(z)p(z)dz$$ $$= \sum_{i=1}^{k} a_{i} \int (z - \overline{z})^{i+1}p(z)dz + \overline{z} \overline{w}$$ $$= \sum_{i=1}^{k} a_{i}M_{i+1} + \overline{z} \overline{w}.$$ Plugging the above expressions for \overline{w} and I_1 into equation (7a) one finds that the within generation change in \overline{z} is $$\Delta \overline{z} = \overline{z}' - \overline{z}$$ $$= \frac{I_1}{\overline{w}} - \overline{z}$$ $$= \frac{\sum_{i=1}^{k} a_i M_{i+1}}{a_0 + \sum_{i=2}^{k} a_i M_i},$$ which is equation (9a). In a similar way, the numerator in equation 7b is $$\begin{split} I_2 &= \int z^2 w(z) p(z) dz \\ &= \int (z - \overline{z} + \overline{z})^2 w(z) p(z) dz \\ &= \int \left[(z - \overline{z})^2 + 2(z - \overline{z}) \overline{z} + \overline{z}^2 \right] w(z) p(z) dz \\ &= \int (z - \overline{z})^2 [a_0 + \sum_{i=1}^k a_i (z - \overline{z})^i] p(z) dz + 2 \overline{z} \int (z - \overline{z}) w(z) p(z) dz + \overline{z}^2 \int w(z) p(z) dz \\ &= a_0 M_2 + \sum_{i=1}^k a_i M_{i+2} + 2 \overline{z} (I_1 - \overline{z} \ \overline{w}) + \overline{z}^2 \ \overline{w} \\ &= \sum_{i=0}^k a_i M_{i+2} + 2 \overline{z} \sum_{i=1}^k a_i M_{i+1} + \overline{z}^2 \ \overline{w}. \end{split}$$ Thus, $$\begin{split} \Delta M_2 = & M_2' - M_2 \\ = & \frac{I_2}{\overline{w}} - (\overline{z}')^2 - M_2 \\ = & \frac{\sum_{i=0}^k a_i M_{i+2} + 2\overline{z} \sum_{i=1}^k a_i M_{i+1}}{\overline{w}} + \overline{z}^2 - (\overline{z} + \Delta \overline{z})^2 - M_2 \\ = & \frac{a_0 M_2 + \sum_{i=1}^k a_i M_{i+2} - M_2 \overline{w}}{\overline{w}} + 2\overline{z} \frac{\sum_{i=1}^k a_i M_{i+1}}{\overline{w}} - 2\overline{z} \Delta \overline{z} - (\Delta \overline{z})^2 \\ = & \frac{a_0 M_2 + \sum_{i=1}^k a_i M_{i+2} - M_2 (a_0 + \sum_{i=1}^k a_i M_i)}{\overline{w}} - (\Delta \overline{z})^2 \\ = & \frac{\sum_{i=1}^k a_i (M_{i+2} - M_2 M_i)}{\overline{w}} - (\Delta \overline{z})^2, \end{split}$$ which is equation (9b). ## Analysis of equations 2 and 10 Taking the difference of equations (2a) and (2b) one finds that $$\Delta(\overline{x} - \overline{y}) = \alpha(\overline{x} - \overline{y}) \left[2V_x \frac{s}{\theta} \left(1 - \alpha \frac{(\overline{x} - \overline{y})^2}{\theta} \right) - V_y \right]$$ $$= \alpha(\overline{x} - \overline{y}) 2V_x \frac{s}{\theta} \left[1 - \frac{1}{2} \frac{V_y}{V_x} \frac{\theta}{s} - \alpha \frac{(\overline{x} - \overline{y})^2}{\theta} \right) \right].$$ If condition 3 is satisfied, the expression in the square brackets is always negative and $u \equiv \overline{x} - \overline{y} \to 0$ asymptotically. If condition 3 is not satisfied, $u \to \pm \delta$ where δ is found from the quadratic equation obtained by equating the expression in the square brackets to zero. At a mutation selection balance, $$\Delta V_x = 0, \ \Delta V_y = 0.$$ From the second equation one finds the equilibrium value of V_y given by (6a). The equilibrium value of V_x is found using the fact that the expression in the square brackets above is zero: $$0 = 2\alpha V_x^2 \frac{s}{\theta} \left(1 - 3 \frac{\alpha (\overline{y} - \overline{x})^2}{\theta} \right) + \mu_x$$ $$= 2\alpha V_x^2 \frac{s}{\theta} \left(1 - 3(1 - \frac{1}{2} \frac{V_y}{V_x} \frac{\theta}{s}) \right) + \mu_x$$ $$= -4\alpha \frac{s}{\theta} \left(V_x^2 - \frac{3}{4} \frac{\theta}{s} V_y - \frac{1}{4} \frac{\theta}{s} \frac{\mu_x}{\alpha} \right)$$ The last equation has the only positive solution given by (6b). From (6b) it follows that at mutation-selection balance equilibrium $$\frac{1}{2} \frac{V_y}{V_x} \frac{\theta}{s} = \frac{4}{3 \left(1 + \sqrt{1 + \frac{16m_x}{9\mu_y}} \frac{s}{\theta}\right)},$$ which is always < 2/3. Thus, condition (3) is never satisfied.