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ABSTRACT: A holey adaptive landscape is an adaptive landscape
where relatively infrequent well-fit combinations of genes form a
contiguous set that expands throughout the genotype space. I for-
mulate and study a series of simple models describing the dynamics
of speciation on holey adaptive landscapes driven by mutation and
random genetic drift. Unlike most previous models that concentrate
only on some stages of speciation, the models studied here describe
the complete process of speciation from initiation until completion.
The evolutionary factors included are selection (reproductive isola-
tion), random genetic drift, mutation, recombination, and migration.
In these models, pre- and postmating reproductive isolation is a
consequence of cumulative genetic change. I study possibilities for
speciation according to allopatric, parapatric, peripatric, and vicar-
iance scenarios. The results presented here, together with earlier nu-
merical simulations, strongly suggest that rapid speciation, including
simultaneous emergence of several new species, is a plausible out-
come of the evolutionary dynamics of subdivided populations. Rapid
speciation is most likely for populations that are subdivided into a
large number of small subpopulations. Speciation is possible even
when subpopulations exchange several individuals per generation.
Selection for local adaptation is not necessary for rapid speciation.
I briefly discuss implications of the dynamics on holey adaptive land-
scapes for the nearly neutral theory of molecular evolution and for
the theory of evolution of genetic canalization.

Keywords: evolution, speciation, holey adaptive landscapes, mathe-
matical models.

Speciation has traditionally been considered to be one of
the most important and intriguing processes of evolution.
In spite of this consensus and significant advances in both
experimental and theoretical studies of evolution, under-
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standing speciation still remains a major challenge (Mayr
1982a; Coyne 1992; Templeton 1994). The main reason
for such a discouraging situation is that direct experi-
mental approaches, which are widely used for solving other
problems of evolutionary biology, are not effective for
studying speciation because of the time scale involved.
Experimental work necessarily concentrates on distinct
parts of the process of speciation, intensifying and sim-
plifying the factors under study (Rice and Hostert 1993;
Templeton 1996). In situations where direct experimental
studies are difficult or impossible, mathematical modeling
has proved to be indispensable for providing a unifying
framework. Although numerous attempts to model parts
of the process of speciation have been made, a quantitative
theory of the dynamics of speciation is still missing. Cur-
rently, verbal theories of speciation are far more advanced
than mathematical foundations. As often is the case with
verbal theories (both scientific and otherwise), different
deduced (or induced) aspects of speciation are emphasized
by different workers, resulting in confusion and contro-
versy. The situation is not helped by the absence of general
agreement on a species definition (e.g., Claridge et al.
1997).

Here I attempt to develop some foundations for a gen-
eral dynamical theory of speciation. One possible approach
to this goal would be to begin with a species definition,
then to define speciation accordingly and to develop an
appropriate dynamical model. I do not think such an ap-
proach would be very useful because of a lack of generality.
My models are not based on a specific “species concept.”
I reason that species are different with respect to some
characteristics and that, whatever these differences, they
have a genetic basis. Thus, modeling the dynamics of spe-
ciation is equivalent to modeling the dynamics of genetic
divergence. I use a bottom-up approach: begin with a
model incorporating a range of factors thought to lead to
speciation (e.g., selection, mutation, population subdivi-
sion, etc.) and then try to interpret its dynamic behavior
in terms of different species concepts. As expected, many
aspects of speciation that are emphasized by different spe-
cies concepts (such as reproductive isolation, separate ge-
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notypic clusters, or common evolutionary trajectories)
emerge from the same processes. This clearly indicates that
different species concepts are not mutually exclusive.
The choice of a modeling approach depends on the
purpose of the model. A common view in (evolutionary)
biology is that mathematical models are mainly useful for
making predictions that can be used in experimental work.
Although such a pragmatic approach is probably what
should be expected in contemporary society, a model’s
testable predictions are not necessarily its main contri-
bution to science. Insights provided by models, their ability
to train our intuition about complex phenomena, to pro-
vide a framework for studying such phenomena, and to
identify key components in complex systems are at least
as important as specific predictions. For these purposes,
the most useful tools are simple models and metaphors.
Sewall Wright’s (1932) metaphor of “rugged adaptive
landscapes” is well known and widely used in evolutionary
biology. In the standard interpretation, a rugged adaptive
landscape is a surface in a multidimensional space that
represents the mean fitness of the population as a function
of gamete (or allele) frequencies that characterize the pop-
ulation state. It is envisioned that this surface has many
peaks and valleys corresponding to different adaptive and
maladaptive population states, respectively. The popula-
tion is imagined as a point on the surface that is driven
by selection uphill but that can get stuck on a local peak.
Two general points about scientific metaphors should be
kept in mind. The first is that specific metaphors (as well
as mathematical models) are good for specific purposes
only. The second is that accepting a specific metaphor
necessarily influences and defines the questions that are
considered to be important. The metaphor of rugged adap-
tive landscapes is very useful for thinking about adapta-
tion. However, its utility for understanding speciation is
questionable. From a pragmatic point of view, the process
of splitting a population into two different species is im-
possible to describe in a framework where a population
is the smallest unit. Finer resolution is necessary for de-
scribing the splitting of populations. Accepting the met-
aphor of rugged adaptive landscapes immediately leads to
a problem to be solved: How can a population evolve from
one adaptive peak to another across an adaptive valley
when selection opposes any changes away from the current
adaptive peak? Wright’s solution to this problem, his
shifting-balance theory (Wright 1931, 1982), does not
seem to be satisfactory (Gavrilets 1996; Coyne et al. 1997).
Provine (1986), Barton and Rouhani (1987), Whitlock et
al. (1995), Gavrilets (19974, 1999), and Coyne et al. (1997)
discuss other weaknesses of Wright’s metaphor. I have ar-
gued elsewhere (Gavrilets 19974, 1999) that his metaphor
of rugged adaptive landscapes with its emphasis on adap-
tive peaks and valleys is, to a large degree, a reflection of

the three-dimensional world we live in (see also Provine
1986). Both genotypes and phenotypes of biological or-
ganisms differ in numerous characteristics, and thus the
dimensionality of “real” adaptive landscapes is much larger
than three. Properties of multidimensional adaptive land-
scapes are very different from those of fewer dimensions.
Consequently, it may be misleading to use the three-di-
mensional analogies implicit in the metaphor of rugged
adaptive landscapes in a multidimensional context. I be-
lieve that understanding speciation requires a different
metaphor.

Holey Adaptive Landscapes
The Metaphor of “Holey” Adaptive Landscapes

The basic idea underlying the metaphor is well established,
having been discussed in the literature many times. In
particular, Dobzhansky (1937) pointed out that if there
are multiple genes producing isolation, then reproductive
isolation between two species evolving from a common
ancestor can arise as a by-product of fixing “complemen-
tary” genes, none of which has to be deleterious individ-
ually. To illustrate this, he proposed a simple verbal model
of a two-locus, two-allele system in which well-fit geno-
types formed a chain connecting two reproductively iso-
lated genotypes. Dobzhansky noted that “this scheme may
appear fanciful, but it is worth considering further since
it is supported by some well-established facts and contra-
dicted by none” (1937, p. 282). Similar schemes were dis-
cussed by Bateson (cited in Orr 1997), Muller (1942), Nei
(1976), Maynard Smith (1983), and Barton and Charles-
worth (1984). Kondrashov and Mina expressed this idea
in terms of “complex system of ridges in a genotype space”
and illustrated it graphically (1986, fig. 2). The discussions
of all these authors were restricted to the statement that
if a specific kind of genetic architecture exists, then the
problem of crossing adaptive valleys is solved. Maynard
Smith went one step further by concluding that this kind
of architecture must be present: “It follows that if evolution
by natural selection is to occur, functional proteins must
form a continuous network which can be traversed by unit
mutational steps without passing through nonfunctional
intermediates” (1970, p. 564).

Recently, Maynard Smith’s conjecture was put on firmer
empirical and theoretical grounds. On the one hand, there
has been significant growth in the amount of both direct
and indirect supporting experimental evidence (Orr 1995;
Gavrilets 19974, 1999). On the other hand, extensive “con-
tinuous networks” were discovered in numerical studies
of RNA fitness landscapes (Fontana and Schuster 1987;
Schuster et al. 1994; Griiner et al. 19964, 1996b; Huynen
1996; Huynen et al. 1996) and also of protein fitness land-



scapes (Babajide et al. 1997). Finally, in analytical studies
of different general classes of adaptive landscapes, the ex-
istence of connected networks of well-fit genotypes has
been shown to be inevitable under fairly general conditions
(Gavrilets and Gravner 1997; Reidys 1997; Reidys et al.
1997). These networks were also noticed in the models of
multiplicative selection (Woodcock and Higgs 1996), mod-
els of stabilizing selection on additive quantitative char-
acters (Barton 1989; Mani and Clarke 1990), and Kauf-
mann’s NK model (Barnett 1997; Newman and Engelhardt
1998). The existence of connected networks (or ridges) of
well-fit genotypes that allow for “quasineutral” divergence
appears to be a very general property of adaptive land-
scapes with a very large number of dimensions.

An emerging general view of evolution based on this
property can be summarized in the following way (Gav-
rilets 1997b): An individual organism can be considered
as a combination of genes. All possible combinations of
genes form a genotype space (which, mathematically, can
be represented by a hypercube or a graph). In discussing
the evolution of populations, it is useful to visualize each
individual as a point in this genotype space. Accordingly,
a population will be a cloud of points, and different pop-
ulations (or species) will be represented by different
clouds. Selection, mutation, recombination, random drift,
and other factors change the size, location, and structure
of these clouds. To construct an adaptive landscape, one
assigns a “fitness” to each genotype (or each pair of geno-
types) in genotype space. Different forms of selection and
reproductive isolation can be treated within this concep-
tual framework. For example, fitness can be a genotype’s
viability (in the case of viability selection), or it can be
fertility, or it can be the probability of successful mating
between a pair of genotypes (in the case of fertility selec-
tion or premating isolation, respectively). A finite popu-
lation subject to mutation is likely to be represented by
genotypes with fitnesses within a fitness band determined
by the balance of mutation, selection, and random drift.
Under very general conditions, genotypes with fitnesses
within a specified band form connected “clusters” that
extend throughout the genotype space. A holey adaptive
landscape is an adaptive landscape where relatively infre-
quent well-fit combinations of genes form a contiguous
set that expands throughout genotype space (Gavrilets
19974, 1999; Gavrilets and Gravner 1997). (An appropriate
three-dimensional image of such an adaptive landscape is
a flat surface with many holes representing genotypes that
do not belong to the set.) The metaphor of “holey” adap-
tive landscapes puts special emphasis on these clusters of
well-fit genotypes, disregarding fitness differences between
them and treating all other genotypes as “holes.” The jus-
tification for the latter is a belief that selection will be
effective in moving the population away from these areas
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of genotype space on a time scale that is much faster than
the time scale for speciation. Accordingly, microevolution
and local adaptation can be viewed as the climbing of the
population from a “hole” toward the holey adaptive land-
scape, whereas macroevolution can be viewed as a move-
ment of the population along the holey landscape, with
speciation taking place when the diverging populations
come to be on opposite sides of a hole in the adaptive
landscape. In this scenario, there is no need to go across
the states with a large number of low-fit genotypes (i.e.,
to cross any adaptive valleys). Reproductive isolation be-
tween populations evolves as an inevitable side effect of
accumulating different mutations and genetic divergence
along bands of well-fit genotypes. For more discussion of
this metaphor, see Gavrilets (19974, 1997b, 1999) and Gav-
rilets and Gravner (1997).

Mathematical Models for Holey Adaptive Landscapes

Here I briefly review previously published work on the
evolutionary dynamics on holey adaptive landscapes. Nei
(1976) and Wills (1977) were the first to present formal
analyses of the Dobzhansky model. Nei et al. (1983) stud-
ied one- and two-locus multiallele models with stepwise
mutations and considered both postmating and premating
reproductive isolation. In their models, genotypes were
reproductively isolated if they were different by more than
one or two mutational steps. In these situations, speciation
was very slow. They conjectured, however, that increasing
the number of loci may significantly increase the rate of
speciation. Bengtsson and Christiansen (1983) presented
a deterministic analysis of mutation selection balance in
the Dobzhansky model. Bengtsson (1985), Barton and
Bengtsson (1986), and Gavrilets (1997b) analyzed the
properties of hybrid zones arising under Dobzhansky-type
epistatic selection. Wagner et al. (1994) considered a two-
locus, two-allele model of stabilizing selection, acting on
an epistatic character. For a specific set of parameters, the
interaction of epistasis in the trait and the stabilizing se-
lection on the trait resulted in a fitness “ridge.” The ex-
istence of this ridge simplified stochastic transitions be-
tween alternative equilibria. Gavrilets and Hastings (1996)
formulated a series of two- and three-locus Dobzhansky-
type viability selection models, as well as models for se-
lection on polygenic characters. They studied these models
in the context of founder-effect speciation and noticed that
the existence of ridges in the adaptive landscape made
stochastic divergence much more plausible. Similar con-
clusions were reached by Gavrilets and Boake (1998), who
studied the effects of premating reproductive isolation on
the plausibility of founder-effect speciation. Higgs and
Derrida (1991, 1992) proposed a model where the prob-
ability of mating between two haploid individuals is a
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decreasing function of the proportion of loci at which they
are different. Here any two sufficiently different genotypes
can be considered as sitting on opposite sides of a hole in
a holey adaptive landscape. These authors, as well as
Manzo and Peliti (1994), studied this model numerically,
assuming that the number of the loci is infinite, the loci
are unlinked and highly mutable, and mating is prefer-
ential. Orr (1995) and Orr and Orr (1996) studied spe-
ciation in a series of models in which viability of a diploid
organism depends on the number of heterozygous loci.
All these papers postulated the existence of ridges of well-
fit genotypes. Gavrilets and Gravner (1997) studied a gen-
eral class of multilocus selection models and showed the
existence of ridges to be inevitable under fairly general
conditions. Independently, a similar conclusion was
reached in Reidys (1997) and Reidys et al. (1997). Most
previous studies of the dynamics of speciation on holey
adaptive landscapes were numerical. To develop a dynam-
ical theory of speciation, it is desirable to have a simple
model that can be treated analytically.

The Model

I consider finite populations of haploid individuals with
discrete, nonoverlapping generations. I assume that re-
production involves gene exchange (amphimixis) between
individuals. The restriction to haploids is for algebraic sim-
plicity. Models for diploids will be discussed later. Indi-
viduals are different with respect to L possibly linked dial-
lelic loci. Without any loss of generality, each individual’s
genotype can be represented as a sequence of zeros and
ones. Let I* = (I, ..., I¢), where I = 0 or 1, be such a
sequence for an individual «. In standard population ge-
netics models, the population state is usually described in
terms of gamete frequencies. In systems with many loci,
such an approach is not practical. For instance, with 10
diallelic loci there are 2' different gametes. Thus, one
would need to analyze more than 1,000 coupled equations.
Another complication follows from the fact that even in
very large populations with hundreds of thousands of in-
dividuals, each specific genotype is represented only by a
small number of copies or is not represented at all. Thus,
using gamete frequencies in describing multilocus evolu-
tion might be very difficult. Here I will be interested in
the levels of genetic variation within subpopulations and
in the genetic divergence between subpopulations. Both
can be characterized in terms of genetic distance d, defined
as the number of loci at which two individuals are dif-
ferent. More formally, the genetic distance d*® between

individuals « and @ is

= = > (I — IP). M

Genetic distance d is the standard Hamming distance. It
is analogous to the number of segregating sites in a sample
of two gametes, which is widely used in molecular evo-
lutionary genetics (Li 1997), and to the number of het-
erozygous loci in a diploid organism. Genetic distance d
is also closely related to the notion of the overlap, g, be-
tween two sequences, d = (L/2)(1 — q), commonly used in
statistical physics (e.g., Derrida and Peliti 1991). I model
the expected dynamics of average genetic distances within
and between populations, using D,, for the former and D,
for the latter.

I assume that reproductive isolation is caused by cu-
mulative genetic change. I will use a very simple symmetric
model that is closely related to the models discussed above
and that allows one to treat both pre- and postmating
isolation within the same framework. I posit that an en-
counter of two individuals can result in viable and fecund
offspring only if the individuals are different at no more
than K loci. Otherwise, the individuals do not mate (pre-
mating reproductive isolation) or these offspring are in-
viable or sterile (postmating reproductive isolation). More
formally, I assign “fitness” w to each pair of individuals,
depending on the genetic distance d between them:

1 for d<K

wid) = 0 for d>K

©)

(Gavrilets et al. 1998; see appendix for an outline of more
complicated approaches that, in particular, allow for in-
termediate fitness values). In this formulation, any two
genotypes different at more than K loci can be concep-
tualized as sitting on opposite sides of a hole in a holey
adaptive landscape (cf. Higgs and Derrida 1991, 1992). At
the same time, a population can evolve to any reproduc-
tively isolated state by a chain of single-locus substitutions.
The adaptive landscape corresponding to this model is
both “holey” and “correlated.” The latter means that the
probability that two genotypes are reproductively isolated
correlates with the genetic distance (1) between them. In
Nei et al. (1983) and Gavrilets and Boake (1998) models,
individuals separated by more than one mutational step
were reproductively isolated, which corresponds to K =
1. The neutral case (no reproductive isolation) corre-
sponds to K equal to the number of loci.

The mathematical model presented above was inter-
preted as describing sexual haploid populations with fit-
nesses assigned to pairs of individuals, depending on the
genetic distance between them. However, there is an al-



ternative interpretation in that the model describes ran-
domly mating diploid populations. In the diploid case, the
genetic distance (1) between the two gametes forming an
individual is equivalent to the individual’s heterozygosity,
and fitness function (2) specifies fitness as a function of
individual heterozygosity. Therefore, most conclusions of
this article will also be applicable to situations when post-
mating reproductive isolation is in the form of reduced
(or zero) viability of hybrids, caused by the incompatibility
of the genes received from their parents (Wu and Palopoli
1994).

Dynamics in the Neutral Case

Before developing a theory for the dynamics of speciation
in the above model, it is illuminating to start with the
neutral case. Here I summarize some relevant results that
are presented in (or follow directly from) classical papers
(Watterson 1975; Li 1976; Slatkin 1987a; Strobeck 1987).
Let u be the probability of mutation per locus per gen-
eration. The approximations below assume that mating is
random and the number of loci L is large, but p is very
small, so that the probability of mutation per individual
per generation v = Ly << 1. The migration rate, m, and
the inverse of the population size, 1/N, are small as well.

Genetic Variation within an Isolated Population

Let us consider an isolated population of size N,. The
expected change in the average genetic distance within the
population per generation is

DW
AD, = 2v — =¥, 3)
N

T

where the first term in the right-hand side is the contri-
bution of mutation, whereas the second term is the ran-
dom drift reduction of D,. Asymptotically, a mutation-
drift equilibrium is reached with

DI =0 = 2uN,. 4)

Genetic Divergence between Isolated Populations

Let us consider several isolated populations of arbitrary
size. The probability that a specific mutation gets fixed in
a population is 1/N. Different mutations will get fixed in
different populations, resulting in their genetic divergence.
The average genetic distance between any two of them
increases with the rate equal to twice the mutation rate
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per gamete:
AD, = 2v. (5)

The rate of neutral divergence does not depend on pop-
ulation sizes. In particular, it is the same independent of
whether there are many small populations or a few large
populations. Because the number of loci L is finite, an
indefinite increase of D,, which is implied by equation
(5), is impossible. This equation, as well as equation (3)
above and equations (6a) and (6b) below, approximate
the dynamics when genetic distances D,, and D, are small
relative to the number of loci L. To treat the general case,
one has to substitute v for v(1 — 2D, /L) in equations (3)
and (6a) and for v(1 — 2D, /L) in equations (5) and (6b).
With a finite number of loci, the genetic distance D, be-
tween isolated populations approaches L/2 asymptotically.

Subdivided Populations

The effect of migration on the average genetic distances
depends on the spatial structure of populations. Assume
that a population of size N is subdivided into #n subpopu-
lations of size N = N;/n, and that a proportion m > 0 of
individuals migrate to any of the other n — 1 subpopu-
lations. The expected changes in the average genetic dis-
tances within and between subpopulations are

D
AD, = 2 +2m(D, = D,) = (6a)

and

2
AD, = 2v + —ml(Dw - D,). (6b)
p—

Equations (6a) and (6b) assume that v, m, and 1/N are
small. Asymptotically, a mutation-migration-drift equilib-
rium is reached with

D=0 (7a)

and

Di=0+n—1-2, (7b)
m

where 0 is given by equation (4). The average genetic
distance within a subpopulation (of size N) does not de-
pend on the number of subpopulations n or migration
rate m and is the same as is expected in a single population
with size N,. The average genetic distance between sub-
populations increases with the population subdivision and
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decreasing migration. Figure 1 illustrates the dynamics of
neutral divergence in a system of two subpopulations.

Peripheral Population

Assume a “peripheral” population of size N is receiving
migrants from a very large “main” population. Genetic
variation in the main population is assumed to be constant
(and not influenced by migration from the peripheral pop-
ulation). The expected changes in the average genetic dis-
tances within the peripheral population, D,, and between
the peripheral and main populations, D,, are

D,

AD, = 2v + 2m(D, — D,) — FW (8a)

and

AD, = v+ m(D, — Dy), (8b)
where D, is the average genetic distance within the main
population and m is the proportion of individuals in the
peripheral population replaced by migrants from the main
population. Asymptotically, a mutation-migration-drift
equilibrium is reached with

2Nm
DI=——77D, (9a)
1+ 2Nm

and

D; =D, + =, (9b)
m

where the former equation assumes that genetic variation
in the main population is sufficiently large (D, > vN) and
the number of migrants, Nm, is not too small. The average
genetic distance within the peripheral population is always
larger than that for an isolated population of its size
(D) > 2uN). If the number of migrants is large (Nm >
1), the average genetic distance within the peripheral pop-
ulation is about the same as in the “main” population.

Dynamics with Reproductive Isolation

The main feature of both the model for reproductive iso-
lation introduced above and other models of holey adap-
tive landscapes is the existence of chains of equally fit
combinations of genes separated by single substitutions
that extend throughout the genotype space. These chains
can be thought of as “neutral paths” in the adaptive land-
scape. It is important to realize, however, that the existence
of “holes” in a holey adaptive landscape makes the actual
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Figure 1: Dynamics of D, and D, in the neutral case. Population size
N = 100 (solid lines) and N = 200 (dashed lines). The rate of migration
is m = 0.01; the mutation rate per individual is v = 0.0384. Initially,
D, =D, =0.

dynamics of genetic divergence not neutral. In this section,
I summarize some analytical results on the evolutionary
dynamics in the case of reproductive isolation described
by equation (2). Gavrilets et al. (1998) have studied the
possibilities for speciation in this model numerically. De-
tails of the analytical methods used are outlined in the
appendix. To derive the dynamic equations below, I have
used the same assumptions as described above at the be-
ginning of “Dynamics in the Neutral Case,” substituting
the assumption of random mating for the assumption of
random encounters. In addition, I have assumed that the
distributions of genetic distances both within and between
populations are Poisson. There are several sets of approx-
imations resulting in a Poisson distribution of genetic dis-
tances. In the present context, the weakest set seems to be
the assumption that genetic variation at each locus is small
most of the time (rare-alleles approximation) and that the
population is approximately at linkage equilibrium. These
assumptions are standard in analyzing the dynamics of
multilocus systems under the joint action of selection, mu-
tation, and random drift (e.g., Barton 1986; Barton and
Turelli 1987; Biirger et al. 1989; Gavrilets and de Jong
1993).

Genetic Variation within an Isolated Population

After the population becomes polymorphic at K loci, new
mutations are selected against when rare because individ-
uals carrying them have a reduced probability of producing
viable and fecund offspring. Selection experienced by in-
dividual loci underlying reproductive isolation is frequency



dependent (and is similar to that arising in the case of
underdominant selection on a diploid locus). The change
in D, per generation in an isolated population of size N
is approximately

(10)

w

D,
AD, = —sD,+ 2v — ,
N

where

e*DwD“I’(

*"T(K+1,D,) (1)

and I'(x, y) is an incomplete gamma function (e.g., Grad-
shteyn and Ryzhik 1994). The value of D at the mutation-
drift-selection equilibrium can be found by equating the
right-hand side of equation (10) with zero and solving for
D,. Figure 2a illustrates the dependence of D, on the
parameters of the model. This figure indicates that the
equilibrium values of D, are close to the corresponding
neutral predictions given by equation (4) if K is larger
than two or three times 6 (where § = 2Nv is the average
genetic distance within a finite population in the neutral
case). Figure 2b gives the values of the effective selection
coefficient s. With moderately large K (i.e., with K> 10),
s is very small. The effective selection coefficient s can also
be thought of as the strength of induced selection on each
locus underlying reproductive isolation. Figure 2b shows
that very strong selection on the whole genotype (implied
by the existence of complete reproductive isolation at finite
values of K) results in very weak selection at the level of
individual loci.

The mean fitness of the population, w,,, can be defined
as the proportion of pairs of individuals that can mate
and produce fertile and viable offspring (cf. Nei et al.
1983). For a population with an average genetic distance
D,,

W

- 'K+ 1,D,)
w,=—,

YK D) 12

where I'(x + 1) is a gamma function (e.g., Gradshteyn and
Ryzhik 1994). For integer x, I'(x + 1) = x!. Figure 2cshows
that, in spite of relatively high levels of genetic variation
maintained in the population, the genetic load (i.e., the
proportion of reproductively isolated pairs of individuals,
1 — w,) is very low. This seems to be a general property
of holey adaptive landscapes (cf. Wills 1977; Bengtsson
and Christiansen 1983).
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Figure 2: a, Average genetic distance D,, maintained by mutation-selec-
tion-drift balance in an isolated population of size N as a function of K
for v = 0.0384. The circles, squares, diamonds, and triangles give esti-
mates from individual-based simulations for N = 100, 200, 400, and 800,
respectively (30 runs for each parameter configuration). b, Effective se-
lection coefficient s in the case of infinite population size for two values
of v. ¢, Genetic load 1 — w for parameters values as in b.

Genetic Divergence between Isolated Populations

Even after the genetic distance within an isolated popu-
lation has reached an equilibrium level, the population
keeps evolving as different mutations get fixed. As a con-
sequence, isolated populations will continuously diverge
genetically. The asymptotic rate of divergence of two iso-
lated populations of size N each is

AD, =

2uR, (13a)

where

2e75\S
R=—n

b
Jr erf(\S) (13

is the rate of divergence relative to the neutral case. Here
S = Ns/2, s is defined by equation (11) with D, corre-
sponding to the mutation-selection-drift equilibrium, and
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Figure 3: The rate of divergence R relative to the neutral case in an
isolated population of size N as a function of K for v = 0.0384. The
circles, squares, diamonds, and triangles give estimates from individual-
based simulations for N = 100, 200, 400, and 800, respectively (30 runs
for each parameter configuration).

erf(x) is the error function (= 2/\r Joexp(=y*)dy). In the
neutral case, s = 0, R = 1, and equation (13a) reduces to
equation (5). Figure 3 illustrates the dependence of the
relative rate of divergence R on model parameters. In the
neutral case, the rate of genetic divergence AD, does not
depend on the population size (eq. [5]). In contrast, with
reproductive isolation, the rate of divergence decreases
with increasing population size. After the population be-
comes polymorphic at K loci, new mutations are selected
against when rare. Genetic drift operating in finite pop-
ulations overcomes the effect of selection and allows ge-
netic divergence. For example, with K= 20 and v =
.0384, a population of size N = 800 will accumulate about
five substitutions per 1,000 generations. A few thousand
generations will be sufficient for D, to exceed K signifi-
cantly. In contrast, very large randomly mating popula-
tions will diverge very slowly. Figure 3 indicates that the
rate of substitutions is close to the corresponding neutral
predictions if K is larger than two to three times 6 (6 =
2Nv). For this criterion to hold, N must not be extremely
large. Note that, as in the neutral case considered above,

an implicit assumption in equation (13) is that genetic
distance D, is small relative to the number of loci L. In
the general case, AD, = 2v(l —2D,/L)R and D, ap-
proaches L/2 asymptotically.

At what moment can the two diverging populations be
considered as two different species? The answer obviously
depends on what one means by a species. Let us say that
the two populations are different species if the proportion,
w,» of encounters between individuals from different pop-
ulations that can result in mating and viable and fertile
offspring is less than a small number v. (This definition
uses the biological species concept.) Below, it is shown
that, during initial stages of divergence, this proportion
can be approximated by the right-hand side of equation
(12) with D, taking the place of D,. Figure 4 shows the
minimum genetic distance between populations required
for speciation as a function of K for several values of +.
One can see that a genetic distance between the popula-
tions on the order of two or three times K will be sufficient
for the status of separate “biological” species. Note that
there is very little effect of the magnitude of .

Minimum distance for speciation

Figure 4: Minimum genetic distance between populations for speciation
for v = .0001, .001, and .01 (solid lines from top to bottom). Also shown
is the diagonal D = K (dashed line).



Speciation in a Subdivided Population

In the deterministic limit (i.e., with N — «), the genetic
variation of a subdivided population can be maintained
by migration. This can happen if initially alternative alleles
are close to fixation in different subpopulations and se-
lection is sufficiently strong relative to migration (e.g.,
Karlin and McGregor 1972). Let k be the number of loci
at which alternative alleles are close to fixation in different
subpopulations. Respectively, L — k will be the number of
loci at which the same allele is close to fixation in different
subpopulations. In the deterministic limit, k does not
change. In the n-island model, the dynamics of D, and
D, are described by equations

AD, = —sD, + 2v + 2m,(D, — D,) (14a)
and
2m,
AD, = —s(D, — k) + 2v + " (D, = Dy), (14b)
"—

where s is defined by equation (11) and the “effective”
migration rate

(15)

if k< K and m, = 0 otherwise. Here w,, is given by equa-
tion (12) above, whereas w, =T'(K+1—k, D, —
k)/T'(K + 1 — k) is the probability that two randomly cho-
sen individuals from different populations are not repro-
ductively isolated. (Note that if k < K, the expression for
D, reduces to eq. [12] with D, taking the place of D,.)
The effective migration rate m, can be thought of as half
the probability of mating between individuals from dif-
ferent subpopulations. With no reproductive isolation
(with very large K) or no genetic divergence between sub-
populations (with D, = D,, k = 0), the effective migration
rate is equal to the actual migration rate (m, = m). Com-
paring equations (14a) and (14b) with their neutral an-
alogues (8) shows that reproductive isolation results in
two effects. First, it directly reduces genetic variation
within subpopulations. This effect is described by the first
terms in the right-hand side of equations (14a) and (14b).
Also, reproductive isolation reduces the gene flow between
populations. Given that D, > D,, then m, < m, reflecting
the fact that genes brought by migrants have a smaller
probability of being incorporated in the resident popu-
lation. In the deterministic limit, both D, and D, always
evolve to finite equilibrium values.

Random genetic drift results in two effects. First, it re-
duces the genetic variation within subpopulations by the
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amount D, /N. The dynamic equation for D, becomes

DW
AD, = —sD, + 2v + 2m,(D, — D,) — N

w

(16)

Second, genetic drift might change k. The expected change
in k can be approximated as

Ak = 20R27*" — 2km,R(e/2)*""™, (17)
where R is given by equation (13b). The first term in the
right-hand side of equation (17) can be thought of as the
rate at which an allele that is initially rare in both sub-
populations becomes close to fixation in one of the sub-
populations. This rate was found by Lande (1979), using
a diffusion approximation and assuming that migration is
weak. The second term is the rate at which the loci with
different alleles initially close to fixation in different sub-
populations become fixed for the same allele in both of
them. To find this term, I used Barton and Rouhani’s
(1987) method.

Depending on parameter values and initial conditions,
there are two different dynamic regimes. In the first re-
gime, both D, and D, evolve to finite values, which are
smaller than those in the neutral case (and which are much
smaller than the number of loci L). Here selection (re-
productive isolation) reduces genetic divergence both
within and between subpopulations. In the second regime,
D, stays small (relative to L), whereas D, increases effec-
tively indefinitely (to values order L/2). Here selection
(reproductive isolation) reduces the effective migration
rate to zero, resulting in speciation. These dynamics can
be understood in the following way. Changes in D,, and
D, induced by selection are expected to happen on a faster
time scale than changes in k induced by random genetic
drift. Thus, D, and D, values should be close to the equi-
librium values predicted by equations (14b) and (16) when
k is treated as a constant. The dynamic behavior depends
on whether k reaches a finite equilibrium value or keeps
increasing. In the latter case, the effective migration rate
m, reduces to zero and the rate of change of k approaches
2uR, with D, increasing at the same rate (cf. eq. [13b]).

Figure 5 illustrates the dynamics observed by numeri-
cally iterating the model equations. The iterations started
with all N individuals identical. During the first 1,000
generations, there were no restrictions on migration be-
tween subpopulations, and the whole population evolved
as a single randomly mating unit (cf. Gavrilets et al. 1998).
The average genetic distance within the population D,
evolves according to equation (10). Starting with gener-
ation 1,000, restrictions on migration were introduced, and
the dynamics are described by equations (14b)—(17) af-
terward. After generation 1,000, each of these figures has



10 The American Naturalist

o
o

w B
o o
T T

n
o
T

genetic distances

<

\5

o
o

'y
o
T

w
o
T

n
o
T

genetic distances

-

o
L

\
\
\
N
'
f

o
<

50 T

40

30

genetic distances

N
N

T

0 500 1000 2600

generation

1500

Figure 5: Dynamics of speciation in a subdivided population. Unless
specified otherwise, K = 20, v = 0.0384, n = 2. a, Effects of migration
rate: stronger migration, m = 0.01 (dashed lines; no speciation), and
weaker migration, m = 0.001 (solid lines; speciation). Total popula-
tion size N, = 200. b, Effects of mutation rate: weaker mutation,
v = 0.0384 (dashed lines; no speciation), and stronger mutation,
v=>5 x 0.0384 (solid lines; speciation). Other parameters: N, =
400, m = 0.005. ¢, Effect of population subdivision: n = 2 subpo-
pulations (dashed lines; no speciation), and n =5 subpopulations
(solid lines; speciation). Other parameters: N, = 800, m = 0.0033.
Dashed lines represent D, (top line), D, (middle line), and k (bottom
line), respectively. During the first 1,000 generations there are no
restrictions on migration.

two sets of three curves corresponding to two different
values of the parameter(s) under consideration. The curves
within each set represent D,, D,, and k. With migration
rate m = 0.01, all these variables evolve toward finite equi-
librium values (see fig. 5a), whereas with a smaller mi-
gration rate (m = 0.001), D, and k increase, effectively
indefinitely signifying that speciation has taken place.
Thus, reducing migration makes speciation more plausi-
ble. Figure 5b shows that increasing mutation rate (from
v = 0.0384 to five times this value) has a similar effect.
These two figures describe the dynamics expected in a
system of two subpopulations. Figure 5¢ compares the
dynamics observed in a population subdivided into two

and four subpopulations. This figure shows that increasing
population subdivision makes speciation more plausible.
Note that the process of genetic divergence described in
figure 5¢ results in a simultaneous emergence of five spe-
cies. In the cases where speciation takes place (as signified
by continuous increase in the genetic distance between
subpopulations), the curves representing D, and k are par-
allel, meaning that, asymptotically, the genetic divergence
is caused by fixation of different mutations in different
subpopulations. In the cases where speciation does not
take place, k is close to 0.

Altogether, at the qualitative level, the results presented
in figure 5 correspond to both biological intuition and the
results of individual-based simulations in Gavrilets et al.
(1998). At the quantitative level, there is a very good fit
between simulations and analytical predictions for levels
of genetic variation maintained in subpopulations and the
asymptotic rate of divergence between subpopulations.
However, the conditions for speciation as predicted by
iterating equations (14b)—(17) appear to be more strict
than those observed in the individual-based simulations
performed by Gavrilets et al. (1998). For example, for
parameter values used in figure 5¢, no speciation in a
system of five subpopulations occurs if m> 0.0035. In
contrast, in individual-based simulations, speciation was
observed for m = 0.01 (fig. 3b in Gavrilets et al. 1998).
One reason for this discrepancy is an inadequacy of equa-
tion (17) at moderate levels of migration (e.g., Lande 1979;
Barton and Rouhani 1987). Another reason is linkage dis-
equilibria, which are neglected here but which will be gen-
erated by migration and will affect the population char-
acteristics (N. H. Barton, personal communication).

Speciation in a Peripheral Population

Here I consider the case of a peripheral population of size
N receiving migrants from a very large main population.
The dynamics of the average genetic distance within the
peripheral population, D,, the average genetic distance
between the peripheral and main populations, D,, and the
number of diverged loci, k, are approximated by equations

D
AD, = =D, +2v+2m(D, = D,) =7, (18a)
S
AD, = _E(Db —k +v+ m(D,— D,), (18b)

and

Ak = vR27" — km,R(e/2)*N"™. (18¢)



Here D, is the average genetic distance within the main
population. Figure 6 illustrates the dynamics observed by
numerically iterating equations (18a)—(18c). For D,, I used
mutation-selection balance values for a very large isolated
population predicted by equations (10) and (11). The in-
itial values of D, and D, were equal to D,. The parameter
values in figure 6a and figure 6b are the same as those
that resulted in speciation in figure 5a and 55, respectively.
The outcome of the dynamics is the same—
speciation—but the rate of divergence is smaller than when
all subpopulations are uniformly small. This is apparent
from the level of genetic distance between subpopulations
achieved after 1,000 generations of divergence, which are
about twice as small in figures 6a and 6b as those in figures
5a and 5b.

Discussion

The theory developed above, together with earlier nu-
merical simulations (see Gavrilets et al. 1998 and refer-
ences above), show that rapid speciation is a plausible
outcome of the evolutionary dynamics in subdivided pop-
ulations. Here speciation is a consequence of two fun-
damental factors. The first factor is the existence of various
and possibly significantly different well-fit combinations
of genes underlying diverse solutions (genetical, ecological,
behavioral, developmental, etc.) to the problem of survival
and reproduction. In multidimensional genotype space,
these combinations of genes tend to form connected clus-
ters that extend throughout genotype space. At the same
time, these genotypes are not mutually compatible—they
are separated by “holes.” The second factor is mutation
pressure. Because the population size is finite and the num-
ber of loci is very large, whereas the probability of a specific
mutation is very small, different mutations tend to appear
(and increase in frequency) in different subpopulations
(cf. Muller 1939, 1940; Barton 1989; Mani and Clarke
1990). Metaphorically speaking, mutation tends to tear
apart the cloud of points representing the population in
genotype space. Combining genes from two different or-
ganisms in one offspring can counteract the disruptive
effect of mutation, keeping the subdivided population to-
gether in genotype space. But restricting gene exchange as
a consequence of limited migration between subpopula-
tions gives mutation a significant advantage. Eventually,
the population cloud will be broken and smaller clouds
representing the subpopulations will drift apart in geno-
type space—an event representing speciation. Given suf-
ficient genetic divergence, restoring migration to high lev-
els will not return the system back to the state of free gene
exchange between subpopulations, which now can be con-
sidered as different species. It is not necessary to invoke
strong selection for local adaptation to explain speciation
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Figure 6: Dynamics of speciation in a peripheral population. g, Speciation
with m = 0.001; N = 100; K = 20; v = 0.0384 (cf. fig. 5a). b, Speciation
with m = 0.005; N = 200; K= 20; v =5 x 0.0384 (cf. fig. 5b).

in a subdivided population, as studied here, or after a
founder event (Gavrilets and Hastings 1996; Gavrilets and
Boake 1998). Mutation is ubiquitous. Population size is
never infinite, and, thus, genetic drift is always present.
Speciation as caused by mutation and random drift should
represent a null model against which speciation as caused
by local adaptation can be tested (cf. Lande 1976; Nei
1976).

Unlike most previous models that concentrate only on
some stages of speciation, the model studied here describes
the complete process of speciation from initiation until
completion. 1 assumed that reproductive isolation is
caused by cumulative genetic change. The model is de-
scribed in terms of dynamic equations for the variables
analogous to those used in molecular evolutionary biol-
ogy—the average genetic distances between and within
subpopulations. Average genetic distances within
(sub)populations always evolve toward finite equilibrium
values. Depending on parameter values and initial con-
ditions, average genetic distances between subpopulations
either converge to a finite equilibrium or increase effec-
tively indefinitely. The former regime is interpreted as no
speciation. In the latter regime, three effects take place
simultaneously: genetic distances between subpopulations
significantly exceed genetic distances within them, en-
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counters between individuals from different subpopula-
tions do not result in viable and fertile offspring, and
evolutionary changes in a subpopulation do not affect
other subpopulations. Thus, subpopulations form separate
genotypic clusters in genotype space, become reproduc-
tively isolated, and undertake changes as evolutionary in-
dependent units. This regime is interpreted as speciation
according to any of the species concepts common in the
literature (e.g., Templeton 1994; Mallet 1995; Claridge et
al. 1997).

The dynamic equations derived above describe the ex-
pected changes in the average genetic distances, neglecting
stochastic fluctuations around the expected values. The
predicted dynamics have two clearly distinct regimes: con-
vergence toward a finite equilibrium (no speciation) or
effectively indefinite divergence (speciation). Stochastic
fluctuations around the expected values, which are present
in natural populations (and individual-based simulations),
make the boundary between these two regimes less strict
and may result in the population escaping the first regime
and entering the second regime after some time (see Gav-
rilets et al. 1998). My analysis has been based on approx-
imations that are standard in studying multilocus systems.
I assumed that alleles are rare and that linkage disequilib-
rium, mutation, and migration rates are small and used a
theory developed by Lande (1979), Walsh (1982), and Bar-
ton and Rouhani (1987) for describing stochastic transi-
tions driven by random genetic drift. The analytic theory
presented here fits satisfactorily with the results of indi-
vidual-based simulations. The model can be used to eval-
uate qualitative effects of different factors on the dynamics
of speciation, the order of magnitude of parameters re-
sulting in or preventing speciation, and the time scale
involved. According to both biological intuition and pre-
vious numerical simulations, increasing mutation rate and
decreasing migration promote speciation. Increasing the
number of loci has significantly increased the plausibility
of speciation relative to that in earlier models (Nei et al.
1983; Wagner et al. 1994; Gavrilets and Hastings 1996).
Note that the actual number of loci influences the dy-
namics only through the mutation rate per gamete, v, and
parameter K. For realistic parameter values, the time scale
for speciation can be as short as a few thousand or even
hundreds of generations. This is compatible with rates
observed in several cases of rapid speciation in natural
populations described recently (Schluter and McPhail
1992; Yampolsky et al. 1994; Johnson et al. 1996; McCune
1996, 1997), including the most spectacular case—the or-
igin of hundreds of species of Lake Victoria cichlids in
12,000 yr (Johnson et al. 1996). Many biologists would
place these examples within the realm of local adaptation.
Local adaptation is, however, not necessary for rapid spe-
ciation. The model has demonstrated the plausibility of

speciation with relatively low levels of both initial genetic
variation and new genetic variation introduced into the
population each generation (both supplied by mutation).
With higher levels of the former (as in laboratory exper-
iments on speciation, reviewed by Rice and Hostert [1993]
and Templeton [1996]) or of the latter (e.g., as a result of
natural hybridization, reviewed by Bullini [1994], Riese-
berg [1995], and Arnold [1997]), the rate of speciation is
expected to be even higher.

Local Adaptation and Speciation

The model analyzed above shows that rapid speciation in
a subdivided population can occur even without any dif-
ferences between selection regimes operating in different
subpopulations (i.e., without selection for local adapta-
tion). An important question is how genetic changes
brought about by selection for local adaptation would af-
fect the dynamics of speciation (e.g., del Solar 1966; Ayala
et al. 1974; Kilias et al. 1980; Dodd 1989; Schluter 1996;
Givnish and Sytsma 1997). These effects will depend on
whether the genes responsible for local adaptation are dif-
ferent from or are the same as the genes underlying re-
productive isolation.

Assume first that the two sets of genes are completely
different. Let the strength of selection per locus induced
by reproductive isolation be very small so that these loci
can be considered as effectively neutral. (For the model
studied here, this seems to be the case if K is larger than
two to three times 0, where 6 is the average genetic distance
maintained by mutation in a finite population in the neu-
tral case.) Then, Birky and Walsh’s (1988) results tell us
that the rate of substitution in these loci will not be affected
by selection on other loci, independently of linkage. How-
ever, given that reproductive isolation is a result of genetic
incompatibilities, the loci underlying reproductive isola-
tion will be under frequency-dependent selection against
rare alleles, which is analogous to underdominant selection
in diploid populations. Birky and Walsh (1988) have
shown that linkage to advantageous alleles slightly in-
creases the rate of fixation of detrimental mutations. This
suggests that selection on linked loci will increase the rate
of substitutions in the loci underlying reproductive iso-
lation and, thus, will promote speciation to some degree.
No results seem to be known on how linkage to advan-
tageous alleles increases the rate of fixation of underdom-
inant mutations or alleles experiencing frequency-depen-
dent selection. No quantitative predictions can be made
here, but, most likely, if the two sets of loci are not ex-
tremely tightly linked, effects of selection for local adap-
tation on the rate of speciation will not be significant.

Assume now that the loci under consideration pleio-
tropically affect both survival in a given environment and



reproductive isolation. For instance, this may be the case
if disruptive selection acts on habitat preferences that also
define mating patterns (e.g., Rice 1984; Rice and Salt 1988)
or if the probability of mating between individuals depends
on the difference in their morphological traits that are
under direct selection. Let s;, be the average strength of
selection per locus induced by selection for local adap-
tation. Using Walsh’s (1982) results, the relative rate of
fixation of new mutations in an isolated population of size
N can be approximated (see appendix) as

4¢SS
R = 5
Vlerf(VS( + a)) + erf(VSQ — )]

(19)

where S = Ns/2, s is the strength of selection per locus
induced by reproductive isolation, and a = s;,/s. With
a = 0, equation (19) reduces to (13b). Figure 7 illustrates
the dependence of R on S and «. Increasing o« always
increases R. Thus, selection for local adaptation always
increases the rate of substitutions and promotes speciation.
With sufficiently strong selection for local adaptation
(5.4 > s), the net effect of new alleles will be advantageous,
and their frequencies will tend to increase even when rare.
In the limit of large population size, the probability of
fixation is 2(s;, — s). This is analogous to the classical re-
sults on the probability of survival of an advantageous
mutant in a very large population (Haldane 1927; Walsh
1982). The rate of accumulation of genetic differences will
be 2(s;, — s)Nv and can be significant. Very strong artificial
selection for local adaptation has been shown to result in
rapid evolution of reproductive isolation (e.g., del Solar
1966; Kilias et al. 1980; Dodd 1989). However, the changes
brought about by moderately strong artificial selection may
not exceed those resulting from random genetic drift only
(e.g., Ringo et al. 1985).

Population Subdivision and Speciation

In the models considered here, speciation is a by-product
of fixation of different alleles in different subpopulations.
It is well known that the rate of fixation of neutral alleles
does not depend on population size, that the rate of ad-
vantageous alleles increases with population size, and that
the rate of deleterious or underdominant alleles decreases
with population size (e.g., Gillespie 1991; Ohta 1992). At
the level of individual loci, selection induced by repro-
ductive isolation in the form considered here is similar to
underdominant selection (or frequency-dependent selec-
tion against rare alleles). Thus, in the absence of selection
for local adaptation (or with independent loci controlling
traits for local adaptation) decreasing population size will
increase the rate of substitutions and promote speciation
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Figure 7: Relative rate of fixation in the case with local adaptation

(see eq. [13Db]). Effects of the population size on the plau-
sibility of speciation will be similar even if the same loci
control both reproductive isolation and locally beneficial
traits, given that selection for local adaptation is not too
strong (5., < s; see eq. [19] and fig. 7). In all these cases,
speciation will be driven by mutation and random genetic
drift and will be fastest if the population is subdivided
into small subpopulations. This conclusion about the effect
of population subdivision on the probability of speciation
in Dobzhansky-type models differs from that of Orr and
Orr (1996). They argued that the degree of population
subdivision has no effect on the rate of speciation if spe-
ciation is caused by mutation and random drift. Orr and
Orr did not consider the actual process of fixation of new
mutations, assuming that it will be a simple neutral pro-
cess. However, the existence of holes in the adaptive land-
scape makes the process of substitution nonneutral, and
new mutations are selected against when rare. Such mu-
tations are fixed more easily in smaller subpopulations.
For the discussion of the existing experimental evidence
regarding effects of random genetic drift on the plausibility
of speciation, see Rice and Hostert (1993) and Templeton
(1996). The time scale for speciation is short, meaning
that restrictions on migration between subpopulations do
not need to be long lasting; several hundreds of generations
may be sufficient for a significant divergence and evolution
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of reproductive isolation. It is quite possible that several
new species will emerge from a highly subdivided popu-
lation within a short period of time (see fig. 5¢; Gavrilets
et al. 1998). These theoretical conclusions are consistent
with a verbal “microallopatric” model of speciation sug-
gested for cichlid fishes in the East African Great Lakes
(e.g., Reinthal and Meyer 1997). Hoelzer and Melnick
(1994) have emphasized that the possibility of simulta-
neous emergence of several new species should be incor-
porated more explicitly in the contemporary methods for
reconstructing phylogenies.

If the same loci control both reproductive isolation and
locally beneficial traits and selection for local adaptation
is sufficiently strong (s, > s), increasing the population
size will result in increasing the rate of substitutions (see
fig. 7). In this case, speciation will be driven by selection
and will be fastest if the population is subdivided into a
small number (e.g., two) of large subpopulations (Orr and
Orr 1996), as implied by the vicariance scenario (e.g., Wi-
ley 1988).

Many species are thought to be represented by a few
large populations and many smaller “peripheral” popu-
lations. Mayr (1963, 1982b) proposed the theory of per-
ipatric speciation, arguing that speciation is typically ini-
tiated in small peripheral populations, and he attributed
a special role in this process to genetic drift. Gavrilets
(1996) has shown that an invasion of a new adaptive com-
bination of genes is most successful if it is initiated in a
peripheral population. The results presented here bear out
Mayr’s argument (see fig. 6). Small peripheral populations
will rapidly diverge genetically from the “main” large pop-
ulation and speciate. Although differences in selection re-
gimes between peripheral and main populations can ac-
celerate divergence, random genetic drift will be the most
important factor. However, if a peripheral population is
large enough and is under a selection regime that is suf-
ficiently different from the one operating in “main” pop-
ulations, then disruption of gene flow can cause evolu-
tionary divergence, perhaps leading to rapid speciation, in
the absence of contributions from random genetic drift
(Garcia-Ramos and Kirkpatrick 1997).

In summary, large randomly mating populations will
diverge genetically and speciate only if there is strong se-
lection for local adaptation (e.g., after a change in the
environment). In contrast, small populations will diverge
and speciate even without differences in selection regimes
between them. Possibilities for speciation strongly depend
on the geographic structure of the population. Many pop-
ulation geneticists appear to believe that very weak mi-
gration on the order of one individual exchanged between
two populations per generation is sufficient to prevent
genetic differentiation (and speciation). This conclusion,
however, has been only proven for neutral alleles (e.g.,

Slatkin 1987b). The results presented here, together with
earlier numerical simulations (Gavrilets et al. 1998),
strongly suggest that rapid speciation is possible even when
subpopulations exchange several individuals per genera-
tion. Here analysis was restricted to the island model and
the continent-island model. Manzo and Peliti (1994) and
Gavrilets et al. (1998) present numerical results for step-
ping-stone models.

Relationship to Other Speciation Models

Using genetic distance (eq. [1]) implies the equivalence of
loci. A general case of nonequivalent loci can be described
by introducing a (L x L) matrix G = {G;} of weights and
defining a generalized distance between individuals o and
B as

d=* = (I* = 1I°)'G(I* — I), (20)
where 1* and I° are vectors defining the corresponding
genotypes, and superscript T means transpose. Consid-
ering haploid populations and premating isolation only,
the model assumes that individuals can mate only if they
are not too different genetically. Here the degree of re-
productive isolation was controlled by cumulative genetic
difference. However, using the generalized distance, equa-
tion (20) allows one to treat models for reproductive iso-
lation controlled by quantitative traits as well as models
for sexual selection within the same framework (see ap-
pendix). The close relationship between the models of spe-
ciation as a consequence of “quasineutral” divergence
along ridges in the adaptive landscapes and as a conse-
quence of sexual selection was already recognized by Bar-
ton and Charlesworth (1984).

A fundamental reason for speciation on a holey adaptive
landscape is mutation, which tends to break the population
into reproductively isolated pieces. Population subdivision
and the resulting reduction in gene exchange facilitates
this process. Here migration rates compatible with rapid
speciation were small (i.e., speciation was allopatric or
parapatric). An interesting question is whether speciation
is possible with much higher migration rates. In other
words, is sympatric speciation by mutation and random
genetic drift on a holey adaptive landscape possible? Nu-
merical simulations of similar models of sympatric spe-
ciation where mutation rates were higher (Higgs and Der-
rida 1991, 1992), the time span studied was longer (Wu
1985), or the population size was smaller (Gavrilets and
Boake 1998) than here provide an affirmative answer. Add-
ing disruptive selection caused by either abiotic factors
(e.g., different resources) or biotic factors (competition)
should create additional pressure on the population cloud
that might result in rapid sympatric speciation.



Beyond Holey Landscapes

Numerous analytical and numerical results have suggested
that clusters of well-fit genotypes that extend throughout
genotype space are plausible. If this is so, then biological
populations are expected to evolve mainly within these
clusters and consist most of the time of well-fit genotypes
with fitnesses within some band. The metaphor of “holey”
adaptive landscapes neglects the fitness differences between
genotypes in the cluster, but these differences are supposed
to exist and should be apparent on a finer scale. If one
applies a finer resolution, the movement along the cluster
will be accompanied by slight increases or decreases in
fitness. Evolution will proceed by fixation of weakly se-
lected alleles, which can be advantageous, deleterious,
over- and underdominant, or apparently neutral, depend-
ing on the specific area of genotype space the population
passes through. Smaller populations will pass faster
through the areas of genotype space corresponding to fix-
ation of slightly deleterious mutations, whereas larger pop-
ulations will pass faster through the areas corresponding
to fixation of (compensatory) slightly advantageous mu-
tations. This pattern of molecular evolution, as predicted
from the general properties of multidimensional adaptive
landscapes, is similar to the patterns revealed by the meth-
ods of experimental molecular biology, which form the
empirical basis for the nearly neutral theory of molecular
evolution (Ohta 1992). From general considerations, one
should not expect complete symmetry of “real” adaptive
landscapes that are supposed to have areas varying with
respect to the “width” and concentration of ridges of well-
fit genotypes. Numerical simulations show that popula-
tions tend to spend more time in areas of high concen-
tration of well-fit genotypes (Huynen and Hogeweg 1994;
Peliti and Bastolla 1994; Finjord 1996). One of the bio-
logical manifestations of this effect will be an apparent
reduction in the probability of harmful mutations, that is,
evolution of genetic canalization (cf. Wagner 1996). The
metaphor of holey adaptive landscapes may be useful for
thinking about these and other evolutionary problems.
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APPENDIX

Effects of mutation, migration, and drift on the dynamics
of the average genetic distances within and between sub-
populations have previously been studied thoroughly (e.g.,
Watterson 1975; Li 1976; Slatkin 1987a; Strobeck 1987).
What is left is to add reproductive isolation (i.e., selection)
to the model. I will use the deterministic framework as-
suming that the population size N — .

The Distribution of D, under Rare-Alleles and Linkage
Equilibrium Approximation

I will use the standard notations A; and a, for alternative
alleles at the 7 locus (i = 1, ..., L). Let p; be the frequency
of allele A; at the 7th locus, g, = 1 — p,, and ¥, ; = 2pgq.
Variable , ; can be thought of as the probability that two
randomly chosen individuals (sequences) from the same
subpopulation are different at the ith locus. Let d, ;, =
(I* — 1?)* be the genetic distance at the ith locus between
two randomly chosen individuals o and (. Note that
d,.; = 1with probability ., , and d, ; = 0 with probability
1 — 4, . Because d,,; is a binomial random variable, its
generating function isy, (s) = ¥,,;s + 1 — ¥, , which can
be approximated as exp(¥,, (s — 1)) if ¢, ; < 1 (rare-alleles
approximation). Under approximate linkage equilibrium,
the generating function of d, = > d,, ; is

Yo () = Iexp(l,, (s — 1)

_ eXp(E;\[/w,f(s - 1))

= exp(D,(s — 1)), (A1)
where D, = Xy, . This shows that random variable d,,
has approximately Poisson distribution with parameter D,
and, thus,

i

D,
Pd, =1i) = exp(—Dw)T'w. (A2)

Selection within an Isolated Population

Let w(d) be the expected number of fertile and viable
offspring that can be produced by a pair of individuals
different in d loci. The average fitness of the population
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is

W= >, w(j)Pd = j).

]

The dynamics of the general model of fertility selection
and premating isolation in a haploid population consid-
ered here are identical to that of a symmetric viability
selection model for a diploid population with viabilities
w(d), depending on the number of heterozygous loci d.
Under approximate linkage equilibrium, changes in allele
frequencies are described by Wright’s equation

;0 In w

Ap, = pg;9 ‘’n w (A3)

2 ap

(Wright 1969). Using the equalities d In w/dp, = 2(q; —

p)o In w/dy; and D, = 3¢, equation (A3) can be re-
written as

Ap; = spqip; — 4> (Ada)
with
dlnw
= A4
*T b, (A4D)

To describe the dynamics of allele frequencies, one needs
to know the mean fitness of the population.

Truncation Selection

This is a selection scheme analyzed in detail in the main
body of the article. Here

1 for d<K

0 for d>K (A5)

w(d) = [

Using the Poisson approximation (eq. [Al]), the mean
fitness is

S D; T(K+1,D
Wenreshold = ; exp(-=D,) ﬂw = (F(K-f— 1)W) >
where the last equality follows from equation (8.352) in
Gradshteyn and Ryzhik (1994), resulting in s given by
equation (11). To find equation (10), one starts with (A4a)
and proceeds, using the fact that Ay, = 2(g; — p,)Ap; and
that D, = 3 ¢.

Other selection schemes can be considered in a similar
way, and some of them result in relatively compact ex-
pressions for w and s.

Linear Selection

Here

1—ad for d<K

wid) = 0 for d> K. (A6)
The mean fitness is
_ _ D,T'(K, D,)
M/linear = Wthreshold - QW
Quadratic Selection
Here
_[1—ad—bd*> for d<K
wd) = [0 for d> K. (A7)

The mean fitness is

DK+ DI'(K, D,)
T(K)

w = vz/linear - b[Dw(Dw - K) +

D )Qf“H(z, K+2,D)
— exo(— ’
XPH IK+2 |

where H is the hypergeometric function (Gradshteyn and
Ryzhik 1994).

Exponential Selection
Here

wid) = exp(—ad) for d<K

0 for d> K. (A8)

The mean fitness is

T(K+1,D,¢)

w = exp(—D,(1 — e ) TK+ )

I have not explored how assuming these selection schemes
would affect the outcome of the dynamics.

Stochastic Transitions in an Isolated Population

Adding mutation results in equation

Ap, = spqdp; — q.) + ulg; — p)s (A9)



where p is the rate of mutation (assumed to be equal for
forward and backward mutations). Equation (A9) is sim-
ilar to the classical equation describing underdominant
selection on a single locus in a diploid population. This
allows one to use Lande’s results (1979; see also Hedrick
1981; Walsh 1982; Barton and Rouhani 1987) to find the
rate of stochastic divergence. This rate is twice the expected
number, vN, of new mutations in a population times the
probability that a given one will be fixed, U. Using the
diffusion approximation, U is defined by equations (1a)
and (2) in Lande (1979). Lande used some approximations
to evaluate U. However, the integrals in his equation (1a)
can be found exactly leading to

erj{ \/3(1 - %)‘

v=-\1-———|,
2 erf[\/S]

(A10)
where S = Ns/2 (Walsh 1982). Expanding in a Taylor series
under the assumption that 1/N < 1 results in (13b), which
is equivalent to Lande’s (1979) formula. The difference
between Lande’s approximate formula and the exact equa-
tion (A10) is negligible.

The Distribution of D, under Rare-Alleles and Linkage
Equilibrium Approximation

Let us consider two subpopulations. Let p; and P. be the
frequencies of allele A, in the first and second subpopu-
lations, respectively. The genetic distance d, ; at the ith
locus between two randomly chosen sequences from two
different subpopulations is a binomial variable taking val-
ues 1 and 0, with probabilities ¥, ; = p,Q; + ¢,P, and
1 — 4, ;, respectively (q;=1—p, Q;=1— P). I will as-
sume that genetic variation within each subpopulation is
low, so that i, ; is close to either 0 or 1. Let §, = d,,; if
Y, ;= 0, and let 6, = 1 — d, ; if Y, ; = 1. The genetic dis-
tance between individuals o and 8 can be represented as
d,=k—2X,6,+2>,06, where the first sum is over k loci
at which ¢, ;= 1 and the second sum is over L — k loci
at which v, ;= 0. Using the assumption of linkage equi-
librium, the generating function of d, becomes

T(9) = Elst sy

Sknl,;lexp(_ (s — 1))H?=k+1eXP(¢f(S - 1)

k

s
exp(k(s — 1))

exp(Dy(s — 1)), (A11)

where ¢, is the expectation of §; and D, is the expectation
of d,. Using the properties of generating functions, the
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distribution of d, is

0 if i<k

(Db - k)i_k

— e
(i— k)

P, = i) = (A12)

—(Dp—k)

if i>k.

With fitness function (A5), the probability that two ran-
domly chosen individuals from different subpopulations
are not reproductively isolated is

I'K—k+1,D, — k)
I'K—k+1) ’

W, = 2 P, = i) = (A13)

if k<K, and w,_, if k> K

Deterministic Dynamics in a Subdivided Population

With no reproductive isolation and with equal forward
and backward migration rates and equal population sizes,
the change in p; caused by migration is A, p, = m(P. —
p). The corresponding change in D, is A,D, =
2m(D, — D,). With reproductive isolation, and given that
D, > D,, individuals migrating from other subpopulations
will have reduced probability of mating. Let w,, and w, be
the expected numbers of fertile and viable offspring that
can be produced as a result of within- and between-sub-
populations encounters. For simplicity, I will omit the in-
dex specifying the locus under consideration. With equal
population sizes and migration rates, the change in the

allele frequency caused by migration becomes

A,p=m(P—p), (Al4a)
where the “effective” migration rate is
m, = mae (A14b)
w,

(Compare with the models with migration between pop-
ulations of unequal size where the effective migration rate
is m times the ratio of the population sizes, e.g., Gavrilets
1996.) The corresponding change in D, is
A, D, = 2m(D, — D,). (Al4c)

Changes A, p; can be thought of as changes in allele fre-
quencies brought about by selection between groups of
individuals (migrants and residents), whereas the first term
in the right-hand side of equation (A9) can be thought of
as the change in p brought about by individual selection.
The dynamics of allele frequencies at a specific locus
under the joint action of selection, mutation, and migra-
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tion are described by

Ap =spq(p—q) + m(P—p) + ulg—p) (Al5a)

and

AP =PQ(P— Q) + m(p—P) +u@Q—P) (Al5b)
With s = 5 = constand m, = const and m, < s/6, dynamic
system (A15) has two types of stable equilibria: mutation-
selection balance equilibria with p= P, pg= uls, ¢, =
2uls, and ¥, = 2u/s, and migration-selection equilibria
with p= Q, pq= uls+ mls, ¥, =2uls + 2mls, Yy=1—
2uls — 2m/s. 1 assume that, in the deterministic limit, k
out of L loci evolve toward migration-selection balance
equilibria, whereas the remaining L — k loci evolve toward
mutation-selection balance equilibria. In the latter L — k
loci, the dynamics of y,, and y, are approximated by
equations

Ay, =

—sy, +2u +2m,, — ¥,) (Al6a)

and

Ay, = —s, + 2u +2m W, — ¥y). (A16b)
In the former k loci, the dynamics of ,, are described as
before by (Al6a), whereas the dynamics of y, are ap-
proximated by equation

Ay, = s =) = 2p +2mh, — %), (A7)
Selection always reduces v, whereas mutation always in-
creases it (see eq. [Al6a]). Selection and mutation have
the same effects on y, for the loci evolving toward mu-
tation-selection balance equilibria (see eq. [A16b]). How-
ever, for the loci evolving toward migration-selection bal-
ance equilibria, selection increases y,, whereas mutation
decreases it (see eq. [A17]). Summing up over all loci, one
finds equations (14a) and (14b) of the main text. Equations
(18a)—(18c) are derived in a similar way, assuming that
the allele frequencies in the main population do not
change.

Stochastic Transitions in a Subdivided Population

In a subdivided population, migration tends to reduce
genetic differentiation. Given that migration is sufficiently
strong relative to selection, the same allele will be close to
fixation in both subpopulations. If, by a chance, an alter-
native allele approaches fixation in one of the subpopu-
lations creating significant differentiation at a given locus,
such differentiation will be quickly lost. The number of

loci k at which alternative alleles are close to fixation in
different subpopulations will be close to 0 on average.
However, if migration is relatively weak then the differ-
entiation created by random genetic drift will not be lost
quickly and actually can even accumulate. Let us consider
a locus at which initially the same allele is close to fixation
in both subpopulations (i.e., both p~ 0 and P~ 0). Ne-
glecting the changes in P, the deterministic change in p
caused by selection and migration is approximately

Ap = spq(p — q) — m,p. (A18)

Lande (1979; see also Barton and Rouhani 1987) has
shown that the rate at which allele A becomes close to
fixation in the first subpopulation while its frequency is
about 0 in the second population is approximately
27" times the rate of fixation in the absence of immi-
gration. Assuming that alleles A are brought about by mu-
tation at rate u and summing up over L — kloci, one finds
the first term in the right-hand side of equation (17). Once
alternative alleles are close to fixation in different sub-
populations, random drift can remove genetic differenti-
ation. Let us consider a locus at which initially p = 0 but
P=1. Neglecting the changes in P, the deterministic
change in p caused by selection and immigration is
approximately

Ap = spq(p — q) — m(1 — p). (A19)

Using Barton and Rouhani’s (1987) method, one finds
that the rate at which allele A becomes close to fixation
in both subpopulations is approximately (e/2)*"" times the
rate of fixation in the absence of immigration. Assuming
that alleles A are brought about by migration at rate m,
and summing up over k loci, one finds the second term
in the right-hand side of equation (17).

Stochastic Divergence with Local Adaptation

Let us assume that the allele under consideration is fa-
vorable in a given environment with selective advantage
5,4 The change in this allele frequency as defined by the
joint action of selection induced by reproductive isolation
and selection for local adaptation is

Ap = spq(p — q) + s.apq. (A20)

This equation is identical to the one describing meiotic
drive in the appendix of Walsh (1982). Following Walsh,



the fixation probability is

erf(NS1 — a)) — erf(\/g(l —a- %))

U (S0 —a) + ef(s 0 (2D

where § = Ns/2 and « = 5,,/S. Expanding the numerator
in a Taylor series under the assumption that 1/N < 1 and
multiplying the results by the expected number of mutants,
vN, results in the relative rate of fixation given by equation
(19).

Genetic Distance (eq. [20]) and Some Other Models

Genetic distance (eq. [1]) is recovered by assuming that
G is an identity matrix. Assuming that G is a diagonal
matrix with nonequal diagonal elements is a simple way
to introduce nonequivalence of loci. The case when the
probability of mating depends on the difference in a quan-
titative trait can be treated within the same framework.
Let ¢ be the contribution of the ith locus to a quantitative
trait z. Neglecting microenvironmental effects, the trait
values for individuals o and 3 are x* = X ¢l* and z* =
S ¢l?, respectively. The square of the difference of z* and
z® is recovered from equation (20) by assuming that
G; = ¢c. A common way to model sexual selection is to
assume that the probability of mating between a male and
a female depends on the difference in a female phenotypic
trait, z, and a male phenotypic trait, z,,, which are con-
trolled by two different sets of loci (e.g., Lande 1981; Kirk-
patrick 1982; Nei et al. 1983; Wu 1985; Turner and Bur-
rows 1995). Let z,, = 3 ¢ and z, = X cl, where the
sums are taken over the corresponding sets of loci. The
value (z,, — z;)* is recovered from equation (20) by as-
suming that matrix G has a block form

[0 G
G_(G‘ o)'

The diagonal L, x L, and L; x L, zero matrices corre-
spond to the interactions within the set of L, genes con-
trolling the male trait and within the set of L, genes con-
trolling the female trait (L = L;+ L,,), and matrix G,
describing the interactions between the two sets of genes
has elements G; = c/c™.
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